Researches on the Volatile Antimicrobial Compounds from Edible Plants and Their Food Application

천연 휘발성 항균물질의 연구현황과 식품가공에의 이용

  • Kim, Yong-Suk (Faculty of Biotechnology(Food Science & Technology Major), Chonbuk National University) ;
  • Shin, Dong-Hwa (Faculty of Biotechnology(Food Science & Technology Major), Chonbuk National University)
  • 김용석 (전북대학교 응용생물공학부(식품공학 전공) 및 농업과학기술연구소) ;
  • 신동화 (전북대학교 응용생물공학부(식품공학 전공) 및 농업과학기술연구소)
  • Published : 2003.04.01

Abstract

Keywords

References

  1. Shin, D.H. Isolation of natural antimicrobial compound from edible plants and food application. Food Sci. Ind. 23: 68-77 (1990)
  2. Cherry, J.P. Improving the safety of fresh produce with antimicrobials. Food Technol' 53: 54-57, 59 (1999)
  3. Cho, S.H., Lee, S.Y., Kim, J.W., Ko, G.H. and Seo, I.W. Development and application of natural antimicrobial agent isolated from grapefruit seed extract-Antimicrobial activities of grapefruit seed extract. J. Food Hyg. Saf. 10: 33-39 (1995)
  4. Korea Food and Drug Administration. Statistics of Outbreak of Food Poisoning. Ministry of Health and Welfare (2002)
  5. Buzby, J.C. Children and microbial foodborne illness. Food Rev. 24: 32-37 (2001)
  6. Ministry of Health, Labour and Welfare. Japan (http://www.mhlw.go.jp) (2002)
  7. Korea Food and Drug Administration. An Actual Output of Food and Food Additives for 2000. Ministry of Health and Welfare (2001)
  8. Chang, D.S., Shin, D.H., Chung, D.H., Kim, C.M. and Lee, I.S. Food Hygiene, pp. 19-71. Jungmoongak, Seoul (2002)
  9. Ogawa, T .and Isshiki, K. Antimicrobial activity of volatile from edible herbs. Nippon Shokuhin Kagaku Kaishi 43: 535-540 (1996) https://doi.org/10.3136/nskkk.43.535
  10. Vaughn, R.H. The microbiology of dehydrated vegetables. Food Res. 16: 429-433 (1951) https://doi.org/10.1111/j.1365-2621.1951.tb17400.x
  11. Al-Delairny, K.S. and Ali, S.H. Antibacterial action of vegetable extracts on the growth of pathogenic bacteria. J. Sci. Food Agric. 21: 110-112 (1970) https://doi.org/10.1002/jsfa.2740210214
  12. Beuchat, L.R. Sensitivity of Vibrio parahaemolyticus to spices and organic acids. J. Food Sci. 41 : 899-902 (1976) https://doi.org/10.1111/j.1365-2621.1976.tb00748_41_4.x
  13. Beuchat, L.R. and Golden, D.A. Antimicrobials occurring naturally in foods. Food Technol. 43: 134-142 (1989)
  14. Ames, B.N., Magaw, R. and Gold, L.S. Ranking possible carcinogenic hazards. Science 236: 271-280 (1987) https://doi.org/10.1126/science.3563506
  15. Conner, D.E. and Beuchat, L.R. Effects of essential oil from plants on growth of food spoilage yeasts. J. Food Sci. 49: 429-434 (1984) https://doi.org/10.1111/j.1365-2621.1984.tb12437.x
  16. Cho, N.C. and Jhon, D.Y. Effects of garlic extracts on the aerobic bacteria isolated from kimchi. Korean J. Food Sci. Technol. 20: 357-362 (1988)
  17. Shama, A., Tewari, G.M., Shrikhande, A.J., Padwal-Desai, S.R. and Bandypadhyay, C. Inhibition of aflatoxin-producing fungi by onion extracts. J. Food Sci. 44: 1545-1547 (1979) https://doi.org/10.1111/j.1365-2621.1979.tb06484.x
  18. Johnson, M.G. and Vaughn, R.H. Death of Salmonella typhimurium and Escherichia coli in the presence of freshly reconstituted dehydrated garlic and onion. Appl, Microbiol. 17: 903-905 (1969)
  19. Park, S.W. and Kim, C.J. Studies on the food preservation. by antimicrobial action of medicinal herbs. J. Korean Agric. Chem. Soc. 22: 91-96 (1979)
  20. Pack, U.Y., Chang, D.S. and Cho, H.R. Screening of antimicrobial activity for medicinal herb extracts. J. Korean Soc. Food Nutr. 21: 91-96 (1992)
  21. Entani, E., Asai, M., Tsujihara, S., Tsukamoto, Y. and Ohta, M. Antibacterial action of vinegar against food-borne pathogenic bacteria including Escherichia coli O157:H7. J. Food Prot. 61: 953-959 (1998) https://doi.org/10.4315/0362-028X-61.8.953
  22. Tamblyn, K.C. and Conner, D.E. Bactericidal activity of organic acid against Salmonella typhimurium attached to broiler chicken skin. J. Food Prot. 60: 629-633 (1997) https://doi.org/10.4315/0362-028X-60.6.629
  23. Eifert, J.D., Hackney, C.R., Pieson, M.D., Duncan, S.E. and Eigel, W.N. Acetic, lactic, and hydrochloric acid effects on Staphylococcus aureus 196E growth based on a predictive model. J. Food Sci. 62: 174-178 (1997) https://doi.org/10.1111/j.1365-2621.1997.tb04394.x
  24. Ouattara, B., Simard, R.E., Holley, R.A., Piette, G.J.P. and Begin, A. Inhibitory effect of organic acids upon meat spoilage bacteria. J. Food Prot. 60: 246-253 (1997) https://doi.org/10.4315/0362-028X-60.3.246
  25. Daeschel, M.A. Antimicrobial substances from lactic acid bacteria for use as food preservation. Food Technol' 43: 164-167 (1989)
  26. Arihara, K., Ota, H., Itoh, M., Kondo, Y., Sameshima, T., Yamanaka, H., Akimoto, M., Kanai, S. and Miki, T. Lactobacillus acidophilus group lactic acid bacteria applied to meat fermentation. J. Food Sci. 63: 544-547 (1998) https://doi.org/10.1111/j.1365-2621.1998.tb15782.x
  27. Chung, K.T, Thomasson, W.R. and Wu-Yuan, C.D. Growth inhibition of selected food-borne bacteria, particularly Listeria monocytogenes by plant extracts. J. Appl, Bacteriol. 69: 498-503 (1990) https://doi.org/10.1111/j.1365-2672.1990.tb01541.x
  28. Kyung, K.H. and Fleming, H.P. Antimicrobial activity of sulfur compounds derived from cabbage. J. Food Prot. 60: 67-71 (1997) https://doi.org/10.4315/0362-028X-60.1.67
  29. Hao, Y.Y., Brackett, R.E. and Doyle, M.P. Inhibition of Listeria monocytogenes and Aeromonas hydrophila by plant extracts in refrigerated cooked beef. J. Food Prot. 61: 307-312 (1998) https://doi.org/10.4315/0362-028X-61.3.307
  30. Han, J.S., Lee, J.Y., Baek, N.J. and Shin, S.H. Isolation and antimicrobial action of growth inhibitory substance on food borne microorganisms from Dryopteris crassirhizoma Nakai. Korean J. Food Sci. Technol. 33: 611-618 (2001)
  31. Simpson, B.K., Gagne', N., Aschie, I.N.A. and Noroozi, E. Utilization of chitosan for preservation of raw shrimp. Food Biotechnol. 11: 25-44 (1997) https://doi.org/10.1080/08905439709549920
  32. Johansen, C., Gram, L. and Meyer, A.S. The combined inhibitory effect of lysozyme and low pH on growth of Listeria monocytogenes. J. Food Prot. 57: 561-566 (1994) https://doi.org/10.4315/0362-028X-57.7.561
  33. Kabara, J.K. Antimicrobial agents derived from fatty acids. J. Am. Oil Chem. Soc. 61: 397-403 (1984) https://doi.org/10.1007/BF02678802
  34. Ababouch, L., Chaibi, A. and Busta, F.F. Inhibition of bacterial spore growth by fatty acids and their sodium salts. J. Food Prot. 55: 980-984 (1992) https://doi.org/10.4315/0362-028X-55.12.980
  35. Lee, J.Y., Kim, Y.S. and Shin, D.H. Antimicrobial synergistic effect of linolenic acid and monoglyceride against Bacillus cereus and Staphylococcus aureus. J. Agric. Food Chem. 50: 2193-2199 (2002) https://doi.org/10.1021/jf011175a
  36. Pradhan, K.J., Variyar, P.S. and Bandekar, J.R Antimicrobial activity of novel phenolic compounds from green pepper (Piper nigrum L.). Lebensm. Wiss. Technol. 32: 121-123 (1999)
  37. Chung, D.H. Natural Food Preservatives, pp. 10-37. Daekwang Seorim, Seoul (1998)
  38. Lin, C.M., Kim, J.M., Du, W.X. and Wei, C.I. Bactericidal activity of isothiocyanate against pathogens on fresh produce. J. Food Prot. 63: 25-30 (2000) https://doi.org/10.4315/0362-028X-63.1.25
  39. Ohta, Y. and Takatani, K. Preservative effects of allyl mustard oil and ethanol on 'Hirosima nazuke'. J. Japanese Soc. Food Sci. Technol. 29: 672-674 (1982) https://doi.org/10.3136/nskkk1962.29.11_672
  40. Sekiyama, Y., Mizukami, Y., DongShe, H.D. and Uemura, T. Antimicrobial activity of mustard extract against food poisoning bacteria. Japanese J. Food Microbiol. 11: 133-136 (1994) https://doi.org/10.5803/jsfm.11.133
  41. Delaquis, P.J. and Mazza, G. Antimicrobial properties of isothiocyanates in food preservation. Food Technol. 49: 73-84 (1995)
  42. Ahn, E.S., Kim, J.H. and Shin, D.H. Antimicrobial effects of allyl isothiocyanates on several microorganisms. Korean J. Food Sci. Technol. 31: 206-211 (1999)
  43. Kim, Y.S., Ahn, E.S. and Shin, D.H. Extension of shelf life by treatment with allyl isothiocyanate in combination with acetic acid on cooked rice. J. Food Sci. 67: 274-279 (2002) https://doi.org/10.1111/j.1365-2621.2002.tb11397.x
  44. Zhou, Q., Wintersteen, C.L. and Cadwallader, K.R. Identification and quantification of aroma-active components that contribute to the distinct malty flavor of buckwheat honey. J. Agric. Food Chem. 50: 2016-2021 (2002) https://doi.org/10.1021/jf011436g
  45. Aro, T., Brede, C., Manninen, P. and Kallio, H. Determination of semivolatile compounds in baltic herring (Clupea harengus membras) by supercritical fluid extraction-supercritical fluid chromatography-gas chromatography-mass spectrometry. J. Agric. Food Chem. 50: 1970-1975 (2002) https://doi.org/10.1021/jf010829c
  46. Rohloff, J. Essential oil composition of Sachalimint from Norway detected by solid-phase microextraction and gas chromatography-mass spectrometry analysis. J. Agric. Food Chem. 50: 1543-1547 (2002) https://doi.org/10.1021/jf011255e
  47. Schaneberg, B.T. and Khan, I.A. Comparison of extraction methods for marker compounds in the essential oil of lemon grass by GC. J. Agric. Food Chem. 50: 1345-1349 (2002) https://doi.org/10.1021/jf011078h
  48. Dudai, N., Lewinsohn, E., Larkov, O., Katzir, I., Ravid, U., Chaimovitsh, D., Sa'adi, D. and Putievsky, E. Dynamics of yield components and essential oil production in a commercgil hybrid sage (Salvia officinalis x Salvia fruticisa cv. Newe Ya'ar No. 4). J. Agric. Food Chem. 47: 4341-4345 (1999) https://doi.org/10.1021/jf9901587
  49. Galletti, G.C. and Russo, M.T. Essential oil composition of leaves and berries of Vttex agnus-castus L. from Calabria, southern Italy. Rapid Communi. Mass Spectromet. 10: 1345-1350 (1996)
  50. Matsunaga, T., Hasegawa, C., Kawasuji, T., Suzuki, H., Saito, H., Sagioka, T., Takahashi, R, Tsukamoto, H., Morikawa, T. and Akiyama, T. Isolation of the antiulcer compound in essential oil from the leaves of Cryptomeria japonica. BioI. Pharm. Bull. 23: 595-598 (2000) https://doi.org/10.1248/bpb.23.595
  51. Don-Pedro, K.N. Fumigant toxicity is the major route of insecticidal activity of citruspeel essential oil. Pestic. Sci. 46: 71-78 (1996) https://doi.org/10.1002/(SICI)1096-9063(199601)46:1<71::AID-PS318>3.0.CO;2-J
  52. Buchanan, R.L. and Shepherd, A.J. Inhibition of Aspergillus parasiticusby thymol. J. Food Sci. 46: 976-977 (1981) https://doi.org/10.1111/j.1365-2621.1981.tb15404.x
  53. Yin, M.C. and Cheng, W.S. Inhibition of Aspergillus niger and Aspergillus flavus by some herbs and spices. J. Food Prot. 61: 123-125 (1998) https://doi.org/10.4315/0362-028X-61.1.123
  54. Montes-Belmont, R. and Carvajal, M. Control of Aspergillus flavus in maize with plant essential oil and their components. J. Food Prot. 61: 616-619 (1998) https://doi.org/10.4315/0362-028X-61.5.616
  55. Hammer, K.A., Carson, C.F. and Riley, T.V. In-vitro activity of essential oil, in particular Melaleuca alterifolia (tea tree) oil and tea tree oil products, against Candida spp. J. Antimicrob. Chemother. 42: 591-595 (1998) https://doi.org/10.1093/jac/42.5.591
  56. Marino, M., Bersani, C. and Comi, G. Antimicrobial activity of the essential oil of Thymus vulgaris L. measured using a bioimpedo- metric method. J. Food Prot. 62: 1017-1023 (1999) https://doi.org/10.4315/0362-028X-62.9.1017
  57. Delaquis, P.J., Ward, S.M., Holley, R.A., Cliff, M.C. and Mazza, G. Microbiological, chemical and sensory properties of precooked roast beef preserved with horseradish essential oil. J. Food Sci. 64: 519-524 (1999) https://doi.org/10.1111/j.1365-2621.1999.tb15075.x
  58. Ciani, M., Menghini, L., Mariani, F., Pagiotti, R., Menghini, A. and Fatichenti, F. Antimicrobial properties of essential oil of Satureja montana L. on pathogenic and spoilage yeasts. Biotechnol. Lett. 22: 1007-1010 (2000) https://doi.org/10.1023/A:1005649506369
  59. Elgayyar, M., Draughon, F.A., Golden, D.A. and Mount, J.R. Antimicrobial activity of essential oil from plants against selected pathogenic and saprophytic microorganisms. J. Food Prot. 64: 1019-1024 (2001) https://doi.org/10.4315/0362-028X-64.7.1019
  60. Kim, J.M., Marshall, M.R and Wei, C.I. Antibacterial activity of some essence oil component against five food borne pathogens. J. Agric. Food Chem. 43: 2839-2845 (1995) https://doi.org/10.1021/jf00059a013
  61. Sivropoulou, A., Papanikolaou, E., Nikolaou, C., Kokkini, S., Lanaras, T. and Arsenakis, M. Antimicrobial and cytotoxic activities of Origanum essential oil. J. Agric. Food Chem. 44: 1202-1205 (1996) https://doi.org/10.1021/jf950540t
  62. Naigre, R., Kalck, P., Roques, C., Roux, I. and Michel, G. Comparison of antimicrobial properties of monoterpenes and their carbonylated products. Planta Med. 62: 275-277 (1996) https://doi.org/10.1055/s-2006-957877
  63. Ouattara, B., Simard, R.E., Holley, R.A., Piette, G.J.P. and Begin, A. Antibacterial activity of selected fatty acids and essential oil against six meat spoilage organisms. Int. J. Food MicrobioI. 37: 155-162 (1997) https://doi.org/10.1016/S0168-1605(97)00070-6
  64. Shin, K.H., Chi, H.J., Lim, S.S., Cho, S.H., Moon, H.I. and Yu, J.H. Antimicrobial activities of volatile essential oil from Korean aromatic plants. Nat. Prod. Sci. 3: 141-147 (1997)
  65. Ultee, A., Slump, R.A., Steging, G. and Smid, E.J. Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J. Food Prot. 63: 620-624 (2000) https://doi.org/10.4315/0362-028X-63.5.620
  66. Varel, Y.H. and Miller, D.N. Plant-derived oil reduce pathogens and gaseous emissions from stored cattle waste. Appl. Environ. Microbiol. 67: 1366-1370 (2001) https://doi.org/10.1128/AEM.67.3.1366-1370.2001
  67. Dorman, H.J.D. and Deans, S.G. Antimicrobial agents from plants: antibacterial activity of plant volatile oil. J. Appl. MicrobioI. 88: 308-316 (2000) https://doi.org/10.1046/j.1365-2672.2000.00969.x
  68. Cox, S.D., Mann, C.M., Markham, J.L., Bell, H.C., Gustafson, J.E., Warmington, J.R. and Wyllie, S.G. The mode of antimicrobial action of the essential oil of Melaleuca altemifolia (tea tree oil). J. Appl. Microbiol. 88: 170-175 (2000) https://doi.org/10.1046/j.1365-2672.2000.00943.x
  69. Zaika, L.L., Kissinger, J.C. and Wasserman, A.E. Inhibition of lactic acid bacteria by herbs. J. Food Sci. 48: 1455-1459 (1983) https://doi.org/10.1111/j.1365-2621.1983.tb03515.x
  70. Farag, R.S., Daw, Z.Y., Hewedi, F.M. and El-Baroty, G.S.A. Antimicrobial activity of some Egyptian spice essential oil. J. Food Prot. 52: 665-667 (1989) https://doi.org/10.4315/0362-028X-52.9.665
  71. Hussein, A.S.M. Antibacterial and antifungal activities of some Libyan aromatic plants. Planta Med. 56: 644-645 (1990)
  72. Kim, Y.S., Kim, M.N., Kim, J.O. and Lee, J.H. The effect of hot water-extract and flavor compounds of mugwort on microbial growth. J. Korean Soc. Food Sci. Nutr. 23: 994-1000 (1994)
  73. Kang, J.M., Cha, I.H., Lee, Y.K .and Ryu, H.S. Identification of volatile essential oil, and flavor characterization and antimicrobial effect of fraction from Houttuynia cordata Thunb. II.Flavor characterization and antimicrobial effect of from Houttuynia cordata Thunb by prep-HPLC. J. Korean Soc. Food Sci. Nutr. 26: 214-221 (1997)
  74. Kwon, H.D., Cha, I.H., Lee, W.K., Song, J.H. and Park, I.H. Antibacterial activity of volatile flavor components from Houttuynia cordata Thunb. J. Food Sci. Nutr. 1: 208-213 (1996)
  75. Song, J.H., Kim, M.J., Kwon, H.D., Lee, W.K. and Park, I.H. Antimicrobial activity and characterization of volatile flavor extracts from Agastache rugosa. J. Food Sci. Nutr. 4: 97-102 (1999)
  76. Choi, M.A., Lee, W.K. and Kim, M.S. Identification and antibacterial activity of volatile flavor components of Cordyceps militaris. J. Food Sci. Nutr. 4: 18-22 (1999)
  77. Shim, K.H., Seo, K.I., Kang, K.S., Moon, J.S. and Kim, H.C. Antimicrobial substances of distilled components from mustard seed. J. Korean Soc. Food Nutr.24: 948-955 (1995)
  78. Kim, Y.S., Park, S.B., Lee, J.Y., Kim, Y.H. and Shin, D.H. Volatile compounds and antimicrobial effects of mustard seeds and leaf mustard seeds according to extraction method. Food Sci. Biotechnol. 10: 468-474 (2001)
  79. Seo, K.L., Kim, D.Y. and Yang, S.I. Studies on the antimicrobial effect of wasabi extracts. Korean J. Nutr. 28: 1073-1077 (1995)
  80. Lee, S.W., Seo, J.S., Kim, S.D., Kim, Y.H., Yu, S.N. and Kim, D.Y. Allyl isothiocyanate content in different plant parts of Wasabia japonica mastum. Korean J. Crop Sci. 42: 281-285 (1997)
  81. Ahn, E.S., Kim, Y.S. and Shin, D.H. Observation of bactericidal effect of allyl isothiocyanate on Listeria monocytogenes. Food Sci. Biotechnol. 10: 31-35 (2001)
  82. Takeoka, G.R., Flath, R.A, Guntert, M. and Jennings, W. Nectarine volatiles: Vacuum steam distillation versus headspace sampling. J. Agric. Food Chem. 36: 553-560 (1988) https://doi.org/10.1021/jf00081a037
  83. Misharina, T., Golovnya, R. and Beletsky, I. Comparison of the efficiency of isolation of volatiles from foodstuffs by co-distillation and Likens-Nickerson methods, Vol. 35, p. 117. In: Developments in Food Science. Maarse, H. and Van der Heij, D. (eds.). Elsevier, New York, USA (1994)
  84. Pearl, I.A and Darlig, S.F. Hot water extractives of the leaves of Populus heterophylla L., J. Agric. Food Chem. 25: 730-734 (1977) https://doi.org/10.1021/jf60212a035
  85. Taylor, D.L. and Larick, D.K. Investigations into the effect of supercritical carbon dioxide extraction on the fatty acid and volatile profiles of cooked chicken. J. Agric. Food Chem. 43: 2369-2374 (1995) https://doi.org/10.1021/jf00057a010
  86. Timon, M.L., Ventanas, J., Martin, L., Tejeda, J.F. and Garcia, C. Volatile compounds in supercritical carbon dioxide extracts of Iberian ham. J. Agric. Food Chem. 46: 5143-5150 (1998) https://doi.org/10.1021/jf980652v
  87. Godefrot, M., Sandra, P. and Verzere, M. New method for quantitative essential oil analysis. J. Chromatogr. 203: 325-335 (1981) https://doi.org/10.1016/S0021-9673(00)80304-0
  88. Frutos, M., Sanz, J. and Martinez, I. Simultaneous distillation extraction method in the qualitative and quantitative GC analysis of cheese volatile components. Chromatographia 25: 861-864 (1988) https://doi.org/10.1007/BF02311418
  89. Orav, A., Kailas, T. and Liiv, M. Analysis of terpenoic composition of conifer needle oil by steam distillation/extraction, gas chromatography and gas chromatography-mass spectrometry. Chromatographia 43: 215-219 (1996) https://doi.org/10.1007/BF02292955
  90. Charalambous, G. Analysis of Foods and Beverages, Headspace Technique. Academic Press, New York, USA (1978)
  91. Hirvi, T. Mass fragmentographic and sensory analysis of the aroma of some strawberry varieties. Lebensm. Wiss. Technol. 16: 157-161 (1983)
  92. Parliment, T.H. Solvent extraction and distillation techniques. Ch. 1, pp. 1-26. In: Techniques for Analyzing Food Aroma. Marsili, R. (eds.). Marcel Dekker, Inc., New York, USA (1997)
  93. Nickerson, G.B. and Likens, S.T. Gas chromatographic evidence for the occurrence of hop oil components in beer. J. Chromatogr. 21: 1-3 (1966) https://doi.org/10.1016/S0021-9673(01)91252-X
  94. Sides, A., Robards, K. and Helliwell, S. Developments in extraction techniques and their application to analysis of volatiles in foods. Trends in Anal. Chem. 19: 322-329 (2000) https://doi.org/10.1016/S0165-9936(99)00225-3
  95. Au-Yeung, C.Y. and MacLeod, A.J. A comparison of the efficiency of the Likens and Nickerson extractor for aqueous, lipid/aqueous, and lipid samples. J. Agric. Food Chem. 29: 502-505 (1981) https://doi.org/10.1021/jf00105a016
  96. Chang, D.S., Shin, D.H., Chung, D.H., Kim, C.M. and Lee, I.S. Food Hygiene, pp. 244-246. Jungmoongak, Seoul (2002)
  97. Weissinger, W.R., McWatters, K.H. and Beuchat, L.R. Evaluation of volatile chemical treatments for lethality to Salmonella on alfalfa seeds and sprouts. J. Food Prot. 64: 442-450 (2001) https://doi.org/10.4315/0362-028X-64.4.442
  98. Stecchini, M.L., Sarais, I. and Giavedoni, P. Effect of essential oil on Aeromonas hydrophila in a culture medium and in cooked pork. J. Food Prot. 56: 406-409 (1993) https://doi.org/10.4315/0362-028X-56.5.406
  99. Ntirampemba, G., Langlois, B.E., Archbold, D.D., Hamiltonkemp, T.R. and Barth, M.M. Microbial populations of Botrytis cinerea-inoculated strawberry fruit exposed to four volatile compounds. J. Food Prot. 61: 1352-1357 (1998) https://doi.org/10.4315/0362-028X-61.10.1352
  100. Fallik, E., Archbold, D.D., Hamilton-Kemp, T.R., Clements, A.M., Collins, R.W. and Barth, M.M. (E)-2-Hexenal can stimulate Botrytis cinerea growth in vitro and on strawberries in vivo during storage. J. Am. Soc. Hort. Sci. 123: 875-881 (1998)
  101. Clark, G.S. Allyl isothiocyanate. Perf. Fla. 17: 107-109 (1992)
  102. West, L.G., Badenhop, A.F. and McLaughin, J.L. Allyl isothiocyanate and allyl cyanide production in cell-free cabbage extracts, shredded cabbage, and coloslaw. J. Agric. Food Chem. 25: 1234-1238 (1977) https://doi.org/10.1021/jf60214a043
  103. Skandamis, P.N. and Nychas, G.J.E. Development and evaluation of a model predicting the survival of Escherichia coli O157:H7 NCTC 12900 in homemade eggplant salad at various temperatures, pHs, and oregano essential oil concentrations. Appl. Environ. Microbiol. 66: 1646-1653 (2000) https://doi.org/10.1128/AEM.66.4.1646-1653.2000
  104. Lim, L.T. and Tung, M.A. Vapor pressure of allyl isothiocyanate and its transport in PVDC/PVC copolymer packaging film. J. Food Sci. 62: 1061-1066 (1997) https://doi.org/10.1111/j.1365-2621.1997.tb15038.x
  105. Venkitarayanan, K.S., Zhao, T. and Doyle, M.P. Antibacterial effect of Lactoferricin B on Escherichia coli 0157:H7 in ground beef. J. Food Prot. 62: 747-750 (1999) https://doi.org/10.4315/0362-028X-62.7.747
  106. EL-Ziney, M.M. and Debevere, J.M. The effect of reuterin on Listeria monocytogenes and Escherichia coli O157:H7 in milk and cottage cheese. J. Food Prot. 61: 1275-1280 (1998) https://doi.org/10.4315/0362-028X-61.10.1275
  107. Faith, N.G., Wierzba, R.K, Ihnot, A.M., Roering, A.M., Lorang, T.D., Kaspar, C.W and Luchansky, J.B. Survival of Escherichia coli O157:H7 in full- and reduced-fat pepperoni after manufacture of sticks, storage of slices at 4$^\circ$C or 21$^\circ$C under air and vacuum, and baking of slices on frozen pizza at 135, 191 and 246$^\circ$C. J. Food Prot. 61: 383-389 (1998) https://doi.org/10.4315/0362-028X-61.4.383
  108. Ahn, Y.S., Shin, D.H. and Kim, Y.S. Inhibitory effect of major food components on the activity of antimicrobial active substance from n-hexane fraction of Mallotus japonicus Muell on Listeria monocytogenes. Korean J. Food Sci. Technol. 32: 469-476 (2000)
  109. Rico-Munoz, E. and Davidson, P.M. Effect of com oil and casein on the antimicrobial activity of phenolic antioxidants. J. Food Sci. 48: 1284-1288 (1983) https://doi.org/10.1111/j.1365-2621.1983.tb09212.x
  110. Shelef, L.A., Jyothi, E.K. and Bulgarelli, M.A. Growth of enteropathogenic and spoilage bacteria in sage-containing broth and foods. J. Food Sci. 49: 737-740, 809 (1984) https://doi.org/10.1111/j.1365-2621.1984.tb13198.x
  111. Galvin, J.R. and Waldrop, Jr. H.L. The future of sensory evaluation in the food industry. Food Technol. 44: 95-96, 100 (1990)