Stabilization of Polyphenolic Antioxidants Using Inclusion Complexation with Cyclodextrin and Their Utilization as the Fresh-food Preservative

폴리페놀계 천연 항산화제의 cyclodextrin inclusion complexation을 통한 안정화와 식품 보존제로의 활용

  • Kim, Tae-Kwon (Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University) ;
  • Shin, Hyun-Dong (Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Yong-Hyun (Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University)
  • 김태권 (경북대학교 자연과학대학 유전공학과) ;
  • 신현동 (경북대학교 자연과학대학 유전공학과) ;
  • 이용현 (경북대학교 자연과학대학 유전공학과)
  • Published : 2003.04.01

Abstract

Insoluble polyphenol antioxidants, quercetin and catechin, were stabilized through the complexation with cyclodextrin to increase heat and pH stabilities. Comparison of inclusion complex formabilities of quercetin and catechin with ${\alpha}-,\;{\beta}-$, and ${\gamma}-CDs$ revealed ${\beta}-CD$ to be the most suitable result. Optimal molar mixing ratio of ${\beta}-CD$ and quercetin or catechin for inclusion complex formation was found to be 1 : 1. Inclusion complexation was confirmed using differential scanning calorimetry. Solubility of ${\beta}-CD-antioxidant$ inclusion complexes increased compared with native antioxidants, Stability against temperature and pH of ${\beta}-CD-antioxidant$ inclusion complex analyzed revealed antioxidant activities of ${\beta}-CD-quercetin$ and catechin inclusion complexes have higher stabilization compare to raw quercetin and catechin. Peroxide value of linoleic acid dissolved in water decreased substantionally after using ${\beta}-CD-quercetin$ inclusion complex. ${\beta}-CD-antioxidant$ inclusion complex can be used effectively as a fresh-food preservative.

CD의 inclusion complex 형성능을 이용하여 대표적인 polyphenol계 천연 항산화 물질인 quercertin 및 catechin을 안정화시키는 분자 캡슐화 기술을 연구하였다. 먼저 ${\alpha}-,\;{\beta}-$, 그리고 ${\gamma}-CD$의 quercetin 및 catechin의 포접능을 비교하였다. Quercetin/catechin-CD inclusion complex 형성을 DSC thermogram을 이용하여 확인하였다. 또한 ${\beta}-CD$와의 포접에 따른 저용해성 quercetin과 catechin의 물에 대한 용해도의 변화를 관찰한 결과 inclusion complex 형성 시 용해도가 증가하는 것을 관찰할 수 있었다. Inclusion complex의 온도 및 pH에 대한 안정성을 검토한 결과 inclusion complex가 원래의 물질보다 높은 항산화능을 유지하였으며 특히 catechin의 안정성이 크게 향상되었다. Catechin-CD inclusion complex의 식품보존제로서의 적합성을 지방산인 linoleic acid를 시료로 검토하기 위하여 저장 중 과산화물가의 변화를 측정한 결과 포접된 catechin이 보다 높은 항산화능을 보였다. 이와 같은 용해도 및 항산화능의 증가로 볼 때 quercetin/catechin-CD inclusion complex는 신선식품의 보존제로 효과적으로 활용될 수 있는 것으로 판단된다.

Keywords

References

  1. Giese, J. Antioxidants tools for preventing lipid oxidation. Food Technol. 5: 73-81 (1996)
  2. Pszcczola, D.E. Antioxidants: From preserving food quality to quality oflife. Food Technol. 55: 51-59 (2001)
  3. Frankel, E.N. Antioxidants in lipid foods and their on food quality. Food Chem. 57: 51 (1996) https://doi.org/10.1016/0308-8146(96)00067-2
  4. Kim, K.H. and Choi, M.H. Antioxidant activity of flavonoids in plant origin food. KoreanJ. Posthavest5: 121-135 (1999)
  5. Szejtli, Z. Cyclodextrin Technology, pp. 1-78. Kluwer Academic Publisher, Dordrecht, Netherland (1988)
  6. Szejtli, Z. Inclusion of guest molecules, selectivity and molecular recognition by cyclodestrins, Vol. 3, pp. 189-204. In: Comprehensive Supramolecular Chemistry. Szejtli, Z. and Osa, T. (eds.). Elsevier ScienceLtd., Rugby, Netherland (1996)
  7. Szejtli, Z. Cyclodextrins in Pharmacy, pp. 1-18. Kluwer Academic Publisher, Dordrecht, Netherland (1993)
  8. Pszczola, D.E. Production and potential food applications of cyclodextrins. Food Technol. 96-100 (1998)
  9. Hara, K. and Hashimoto, H. Application of cyclodextrin. J. Japanese Soc. Starch Sci. 3: 151-161 (1986)
  10. Song, S.H., Lee, H.I., Chang, S.J. and Woo, G.J. Microencapsulation of garlic oil with $\beta$-cyclodextrin. Food Sci. Biotechnol. 2: 132-135 (1993)
  11. Szente, L. and Szejtli, J. Molecular encapsulation of natural and synthetic coffee flavor with $\beta$-cyclodextrin. J. Food Sci. 51: 1024-1027 (1986) https://doi.org/10.1111/j.1365-2621.1986.tb11224.x
  12. Kamihira, M., Asai, T., Yamagata, Y., Taniguchi, M. and Kobayasi, T Formation of inclusion complexs between cyclodextrins and aromatic compounds under pressurized carbon dioxide. J. Ferment. Bioeng. 69: 350-353 (1990) https://doi.org/10.1016/0922-338X(90)90242-O
  13. Szejtli, Z. Preparation of cyclodextrin complexes, Vol. 3, pp. 243-252. In: Comprehesive Supramolecular Chemistry. Szejtli, Z. and Osa, T (eds.). Elsevier Science Ltd., Rugby, Netherland (1990)
  14. Lee, Y.H., Jeong, S.H. and Park, D.C. Comparison of inclusion complex formation capacity of cyclodextrins with various molecules and characterization of cyclodextrin-fatty acid complex. Korean J. Biotechnol. Bioeng. 10: 149-158 (1995)
  15. Jeong, S.H., Park, D.C. and Lee, Y.H. Formation of cyclodextrin adsrobent using fatty acid as a ligand and fractionation of $\alpha$-, $\beta$-, and $\gamma$-cyclodextrins. Korean J. Biotechnol. Bioeng. 10: 491-498 (1995)
  16. Lee, Y.H., Kim, T.K., Shin, H.D. and Park, D.C. Enzymatic hydrolysis of hydrophobic triolein by lipase in a mono-phase reaction system containing cyclodextrin; reaction charateristics. Biotechnol. Bioprocess Eng. 3: 103-108 (1998) https://doi.org/10.1007/BF02932511
  17. Shin, H.D., Kim, J.H., Kim. T.K., Kim, S.H. and Lee, Y.H. Esterification of hydrophobic substrates by lipase in the cyclodextrin induced emulsion reaction system. Enzyme Microb. Technol. 30: 83-842 (2002)
  18. Kaneko, T, Nakamura, T. and Horikoshi, K Spectrophotometiric determination of cyclization activity of $\beta$-cyclodextrin forming cyclodextrin glucanotransferase. J. Japanese. Soc. Starch Sci. 24: 45-48 (1987)
  19. Higuchi, T. and Connors, K.A. Phase-solubility techniques. Adv. Chem. Instr. 4: 117-212 (1965)
  20. Brand, W.W., Cuvelier, M.E. and Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 28: 25-30 (1995) https://doi.org/10.1016/S0023-6438(95)80008-5
  21. American Oil Chemists' Society, Peroxide value, pp. 8-53. In: Official Methods and Recommended Practices of the American Oil Chemists' Society. American Oil Chemists' Society (eds.). AOCS Press, IL, USA (1998)
  22. Ficarra, R., Ficarra, P., Di Bella, M.R., Raneri, D., Tommasini, S., Calabro, M.L., Gamberini, M.C. and Rustichelli, C. Study of $\beta$-blocker/$\beta$-cyclodextrins inclusion complex by NMR, DSC, X-ray and SEM investigation. J. Pharm. Biomed. Anal. 23: 33-40 (2000) https://doi.org/10.1016/S0731-7085(00)00261-2
  23. Caccia, F., Dispenz, R., Fronza, G., Fuganti, C., Malpezzi, L. and Mele, A. Structure of neohesperidin dihydrochalcone/$\beta$-cyclodextrin inclusion complex: NMR, MS, and X-ray spectroscopic investigation. J. Agric. Food Chem. 46: 1500-1505 (1998) https://doi.org/10.1021/jf970667d
  24. Boudad, H., Legrand, P., Lebas, G., Cheron, M., Duchene, D. and Ponchel, G. Combined hydroxypropyl-$\beta$-cyclodextrln and poly(alkylcyanoacrylate) nanoparticles intended for oral adminstration of saquinavir. Int. J. Pharm. 218: 113-124 (2001) https://doi.org/10.1016/S0378-5173(01)00622-6