Optimization and Elucidation of Esterification between Adipic Acid and 1,4-Butane Diol

Adipic acid와 1,4-butane diol의 에스테르화 반응 최적화 및 반응기작 규명

  • Chung, Suk-Jin (Department of Food Science and Technology, Seoul National University of Technology) ;
  • Park, Soo-Nam (Department of Fine Chemistry, Seoul National University of Technology)
  • 정석진 (서울산업대학교 식품공학과) ;
  • 박수남 (서울산업대학교 정밀화학과)
  • Published : 2003.06.01

Abstract

Aliphatic polyester, especially poly(butylene adipate)(PBA), is quite biodegradable and one of the most promising polymer materials to be commercialized. Bis(4-hydroxybutyl) adipate (BHBA) formation stage is the first principal process in the production of PBA from adipic acid (AA) and 1,4-butane diol (BD). In this study, we investigated for the effective production of Bis(4-hydroxybutyl) adipate (BHBA), effects of molar ratio of adipic acid (AA) to 1,4-butane diol (BD), catalyst (tetrabutyl titanate, TBT) concentration, and temperature on the reaction rate of esterification between AA and BD were investigated. Initial reaction rate of the esterification decreased with increasing molar ratio of AA to BD and reaction temperature, whereas reaction constant increased with increase in catalyst-concentration. Activation energy values for catalyzed and uncatalyzed esterifications were 198.5 and 94.8 kJ/mol, respectively.

본 논문에서는 adipic acid(AA)와 1,4-butane diol(BD)을 반응 기질로 이용한 에스테르화 반응에 의하여 bis(4-hydroxy butyl) adipate(BHBA)를 생산하고자 하였으며, 이때 AA와 BD의 몰비율, 촉매(TBT)농도 및 반응온도 등이 에스테르화 반응에 미치는 영향을 검토함으로써 BHBA를 효율적으로 생산하기 위한 기초 최적화 조건을 제시하고자 하였다. AA와 BD 사이의 직접적 에스테르화 반응시 몰비율이 2.0 이상일 때, 반응속도를 살펴본 결과 몰비율([AA]/[BD])이 증가함에 따라 반응속도는 감소함을 확인하였으며, 촉매농도에 따른 반응속도를 살펴보았을 때 촉매농도가 증가할수록 반응속도상수가 증가함을 알 수 있었다. 또한, 반응온도가 증가함에 따라 반응속도상수는 무촉매와 촉매사용시 모두 증가하였으며, 무촉매 반응 및 촉매사용 반응시의 활성화에너지는 각각 198.5 kJ/mol 및 94.8 kJ/mol로서 TBT 촉매사용시 반응이 약 2배 정도 수월해짐을 알 수 있었다.

Keywords

References

  1. Tokiwa, Y. and Suzuki, T. Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase. J. Appl. Polym. Sci, 26: 441-448 (1981) https://doi.org/10.1002/app.1981.070260206
  2. Hoeschele, G.K. Process for preparing polyesters using a catalyst mixture of tetra-alkyl titanates and zirconates. EP Patent 0,472,179 A2 (1991)
  3. Chang, W.L and Karalis, T. Polyesterification reactions of adipic acid-based polyesters. J. Polym. Sci. 31: 493-504 (1993)
  4. Tomita, K. and Ida, H. Studies on the formation of poly(ethylene terephthalate): 3. Catalytic activity of metal compounds in transesterification of dimethyl terephthalate with ethylene glycol. Polymer 16: 185-190 (1975) https://doi.org/10.1016/0032-3861(75)90051-8
  5. Hovenkamp, S.G. Kinetic aspects of catalyzed reactions in the formation of poly(ethylene terephthalate). J. Polym. Sci. 9: 3617-3625 (1971)
  6. Walker, C.C. The inhibitory effect of carboxylic acids on the catalyzed reaction between dimethyl terephthalate and ethylene glycol. J. Polym. Sci. 21: 623-626 (1983)
  7. Shah, T.H., Bhatty, J.I. and Gamlen, G.A. Aspects of the chemistry of poly(ethylene terephthalate). III. Transesterification of dimethylterephthalate with ethylene glycol in the presence of various catalytic systems. J. Macromol. Sci. 4: 431-443 (1984)
  8. Otton, J., Ratton, S., Vasney, V.A., Markova, G.D., Nametov, K.M., Bakhmutov, V.I., Vinogradova, S.V. and Korshak, V.V. Investigation of the formation of poly(ethylene terephthalate) with model molecules. III. Metal- catalyzed esterification and alcoholysis reactions: Influence of the structure of the reactants and of the nature of the reaction medium. J. Polym. Sci. 27: 3535-3550 (1989)
  9. Flory, P.J. Principles of Polymer Chemistry, 3rd ed., pp. 69-104. Cornell University Press, New York, USA (1953)
  10. Levenspiel, O. Chemical Reaction Engineering, 2nd ed., pp. 8-40. John Wiley & Sons, Inc., New York, USA (1972)
  11. Datye, K.V. and Raje, H.M. Kinetics of transesterification of dimethyl terephthalate with ethylene glycol. J. Appl. Polym. Sci. 30: 205-219 (1985) https://doi.org/10.1002/app.1985.070300117
  12. Park, S.S., Jun, H.W. and Im, S.S. Kinetics of forming poly(butylene succinate) (PBS) oligomer in the presence of MBTO catalyst. Polym. Eng. Sci. 38: 905-914 (1998) https://doi.org/10.1002/pen.10257