Study on Immuno-stimulating Activity of ${\beta}$-Glucan Isolated from the Cell Wall of Yeast Mutant Saccharomyces cerevisiae IS2

효모변이주 Saccharomyces cerevisiae IS2 세포벽 유래의 베타글루칸 면역활성능에 관한 연구

  • Park, Jeong-Hoon (Research Institute, Bioprogen Co., Ltd.) ;
  • Kang, Man-Sik (Research Institute, Bioprogen Co., Ltd.) ;
  • Kim, Hong-Il (Department of Biotechnology, Faculty of Life Science, Konkuk University) ;
  • Chung, Bong-Hyun (Laboratory of Integrative Biotechnology, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Kwang-Ho (Department of Biotechnology, Faculty of Life Science, Konkuk University) ;
  • Moon, Won-Kuk (Research Institute, En-Bio technology Co., Ltd.)
  • 박정훈 (바이오프로젠 기업부설연구소) ;
  • 강만식 (바이오프로젠 기업부설연구소) ;
  • 김홍일 (건국대학교 생명과학부 생명공학과) ;
  • 정봉현 (한국생명공학연구원 융합생명공학연구실) ;
  • 이광호 (건국대학교 생명과학부 생명공학과) ;
  • 문원국 (엔바이오테크놀러지 부설연구소)
  • Published : 2003.06.01

Abstract

Yeast cell wall mutant, Saccharomyces cerevisiae IS2 was screened by the NTG treatment of Saccharomyces cerevisiae KCTC 7911. The mutant was highly resistant to zymolase, which specifically degrades ${\beta}$-1,3-D-glucose chain of ${\beta}$-glucan and mechanical disruption by glass beads. These phenomena demonstrate that the yeast mutant has cell wall structure different from the wild-type. The ${\beta}$-glucan of yeast mutant and wild-type strains was recovered by sequential extraction with NaOH. The injection of ${\beta}$-glucan into the abdominal cavity of mouse resulted in an increase in the number of peritoneal immune cells, NO (nitric oxide) production, and phagocytic activity of macrophage. The number of immune cells was found to be $3.90{\times}10^6\;cells/10\;mL$ and $5.48{\times}10^6\;cells/10\;mL$ with the wild-type and mutant ${\beta}$-glucan, respectively. The effect on the NO production and phagocytic activity of mutant ${\beta}$-glucan were 1.69 and 1.43-fold higher than those of wild-type. These results indicate that the immuno-stimulating activity of alternated ${\beta}$-glucan from mutant yeast is higher than that of wild-type.

S. cereviaiae KCTC 7911에 돌연변이를 유도하고 selective pressure로서 세포벽 분해효소인 zymolsae와 mechanical stress인 glass bead를 차례로 처리하여 효모변이주를 S. cerevisiae IS2를 선발하였다. S. cerevisiae IS2는 세포벽 분해효소인 zymolase의 농도별 내성실험 결과 wild-type에 비해 훨씬 강한 내성을 보여 세포벽에 변화가 일어난 균주로 예상된다. 효모변이주와 wild-type으로부터 베타글루칸을 추출하여 면역활성에 미치는 영향을 조사하기 위해 생쥐의 복강에 주사하고 생성되는 면역세포의 수, NO 생성능, 및 면역세포의 대다수를 차지하는 대식세포의 탐식능을 측정하였다. 베타글루칸을 쥐의 복강에 주사하였을 때 베타글루칸의 종류에 상관없이 면역세포의 수, NO 생성능 및 대식세포의 활성도가 증가하는 결과를 얻을 수 있었다. 특히 변이주 베타글루칸을 주사하였을 경우 wild-type 베타글루칸에 비해 면역세포의 수는 1.40배, NO 생성능은 1.12배, 대식세포의 활성도와 탐식능은 각각 1.18배와 1.43배 높은 수치를 얻을 수 있었다. 이러한 결과들로 미루어 변이주 베타글루칸이 wild-type 베타글루칸보다 우수한 면역활성 촉진능력을 가지고 있음을 증명할 수 있었으며, 고부가가치 기능성 면역물질로서의 응용 가능성을 확인할 수 있었다.

Keywords

References

  1. Abel, G., Szollosi, J., Chihara, G. and Facht, J. Effect of lentinan and mannan on phagocytosis of fluorescent latex microbeads by mouse peritoneal macrophages: a flow cytometric study. Jnt. J. Jmmunopharmacol. 11: 615-621 (1988)
  2. Bogward, J., Johnson, E. and Seljelid, R. The cytotoxic effect of mouse macrophages stimulated in vitro by a $\beta$-l ,3-D-glucan from yeast cell walls. J. Jmmunol. 15: 297-304 (1982)
  3. Bohn, J.A. and BeMiller, J.N. $\beta$-1,3-D-glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr. Polym. 28: 3-14 (1995) https://doi.org/10.1016/0144-8617(95)00076-3
  4. Browder, l.W., Williams, D., Sherwood, E., McNamee, R., Jones,E. and DiLuzio, N. Synergistic effect of nonspecific immunostima ulation and antibiotics in experimental peritonitis. Surgery 102: 206-214 (1987)
  5. Buddle, B.M., Pulford, H.D. and Ralston, M. Protective effect of glucan against experimentally induced staphylococcal mastitis in ewes. Vet. Microbiol. 16: 67-76 (1988) https://doi.org/10.1016/0378-1135(88)90127-7
  6. Calton, B.C. and Brown, B.J. Gene mutation, pp. 222-242. In: Manual of Methods for General Bacteriology. ASM, Washington DC, USA (1981)
  7. Cleary, J.A., Kelly, G.E. and Husband, A.J. The effect of molecular weight and $\beta$-1,6-linkages on priming of macrophage function in mice by $\beta$-1,3-D-glucan. Immunol, Cell Biol, 77: 395-403 (1999) https://doi.org/10.1046/j.1440-1711.1999.00848.x
  8. Donizis, R.A Substantially purified $\beta$-1,3-finely ground yeast cell wall glucan composition with dermatological and nutritional uses. US Patent 5,576,015 (1996)
  9. DilLuzio, N.R. Immunopharmacology of glucan: a broad spectrum enhancer of host defense mechanisms. Trends Pharmacol. Sci. 4: 344-347 (1983) https://doi.org/10.1016/0165-6147(83)90434-0
  10. Dziezak, J.D. Yeasts and yeast derivatives-Applications. Food Technol. 41: 122-125 (1987)
  11. Franek, J., Malina, J., and Kratka, H. Bacterial infection modulated by glucan: a search for the host defense potentiation mechanisms. Folia Microbiol. (Praha) 37: 146-152 (1992) https://doi.org/10.1007/BF02836620
  12. Hong, J.S., Lee, K.R., Kim, Y.H., Kim, D.H., Kim, M.K., Kim, Y.S. and Yeo, K.Y. Volatile Flavor Compounds of Korean Shiitake Mushroom (Lentinus edodes). Korean J. Food Sci. Technol. 20: 606-615 (1988)
  13. Kelly, and Edmund, G. Process for glucan preparation and therapeutic uses of glucan. US Patent 6,242,594 (2001)
  14. Klis, F.M. Review: Cell wall assembly in yeast. Yeast 10: 851-869 (1994) https://doi.org/10.1002/yea.320100702
  15. Kokoshis, P.L., Williams, D.L., Cook, J.A. and DiLuzio, N.R. Increased resistance to Staphylococcus aureus infection and enhancement in serum lysozyme activity by glucan. Science 199: 1340-1342 (1978) https://doi.org/10.1126/science.628841
  16. Manners, D.J., Masson, A.J. and Patterson, J.C. The structure of a $\beta$-(1,3)-D-glucan from yeast cell walls. Biochem, J. 135:19-30(1973)
  17. Newman, R.K., Lewis, S.E., Newman, C.W., Boik, R.J. and Pamage, R.T. Hypocholesterolemic effect of barley foods on healthy men. Nutr. Rep. Int. 39: 749-760 (1989)
  18. Oh, H.J. and Lee, S.R. Physiological function in vitro of $\beta$-glucan isolated from barley. Korean J. Food Sci. Technol. 28: 689-695 (1996)
  19. Reynolds, J.A., Kastello, M.D., Harrington, D.G., Crabbs, C.L., Peters, C.J., Jemski, J.V., Scott, G.H. and DiLuzio, N.R. (1980) Glucan-induced enhancement of host resistance to selected infectious diseases. Infection Immunity 30: 51-57
  20. Robbins, E.A. and Seeley, R.D. Cholesterol lowering effect of dietary yeast and yeast fractions. J. Food Sci. 42: 694-698 (1977) https://doi.org/10.1111/j.1365-2621.1977.tb12581.x
  21. Seeley, R.D. Fractionation and utilization of baker's yeast. MBAA Tech. Q. 14: 35-39 (1977)
  22. Suga, T., Shiio, T., Maeda, Y.Y. and Cjihara, G. Antitumor activity of lentinan in murine syngenic and autochthonous hosts and its suppressive effection 3-methyl-cholanthrene-induced carcinogensis. Cancer Res. 44: 5132-5137 (1984)