Adipocyte Differentiation Inhibitor Isolated from the Barks of Phellodendron amurense

황백(Phellodendri Cortex)으로부터 분리한 지방세포 분화 저해물질

  • Kim, Kyung-Hee (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ahn, Soon-Cheol (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Myung-Sun (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kweon, Oh-Song (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Oh, Won-Keun (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Min-Soo (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Sohn, Cheon-Bae (Department of Food and Nutrition, Chungnam National University) ;
  • Ahn, Jong-Seog (Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Published : 2003.06.01

Abstract

For the development of the anti-obesity natural drug, the inhibitor of adipocyte differentiation was screened from Korean traditional medicinal plants. Phellodendri Cortex was selected as a candidate of adipocyte differentiation inhibitor. An inhibitory compound PC-4 was purified from the methanol (MeOH) extract of Phellodendri Cortex using silica gel and ODS RP-18 column chromatography and HPLC. PC-4 was obtained as yellow powder; UV ${\lambda}_{max}$ (MeOH): 230, 260, 340 and 430 nm. The chemical structure of PC-4 was determined as an isoquionoline alkaloid, berberine, on the basis of various NMR experiments including $^1H-\;and\;^{13}C-NMR$. The PC-4 inhibited the differentiation of preadipocyte NIH-3T3 L1 cells at a concentration of $1\;{\mu}g/mL$.

비만 저해 물질을 탐색하고자 전통의학에서 사용되는 200여 종류의 식용 또는 약용식물을 대상으로 지방세포 분화저해활성을 보이는 생약식물을 선별하여 용매층으로 활성이 이행되는 생약 중 황백(Phellodendri Cortex)을 최종적으로 후보식물로 선정하였다. 황백을 메탄올로 추출한 후, silica gel column chromatography, ODS RP-18 column chromatography, HPLC 등을 수행하여 지방세포 분화 저해활성을 갖는 화합물 PC-4를 분리하였다. PC-4는 노란색의 분말형태로 메탄올을 용매로 UV 최대흡수치를 조사한 결과, 222, 265, 349, 429 nm에서 최대의 UV의 흡수치를 보였으며 산이나 알카리 조건에서 최대 흡수치의 변화가 관찰되지 않았다. EI-mass spectrum을 측정한 결과, 분자량이 336.1로 예상되었으며 $^1H-NMR,\;^{13}C-NMR,\;DEPT,\;^1H-^1H\;COSY$, HMQC, HMBC NMR spectrum을 통해, PC-4는 isoquionoline alkaloide계열의 berberine으로 동정되었다. PC-4는 지방의 대사에 관여하는 중요한 효소인 fatty acid synthase와 pancreatic lipase에 대한 저해활성은 나타나지 않았으나, 지방세포 분화 저해활성은 $1\;{\mu}g/mL$의 낮은 농도에서도 관찰되었다.

Keywords

References

  1. Michio, S., Moritake, H., Zhou, Y.T., Wang, M.Y., Christopher, B.N. and Roger, H.U. Lipoapoptosis in beta-cells of obese prediabetic fa/fa rats. J. BioI. Chem. 273: 32487-32490 (1998) https://doi.org/10.1074/jbc.273.49.32487
  2. Bradford, B.L. and Bruce, M.S. Towards a molecular understanding of adaptive thermogenesis. Nature 404: 652-660 (2000)
  3. Kim, J.B. New horizon in atherosclerosis research: Insights into fat cell differentiation and insulin sensitivity with ADDl/SREBPl and PPAR$\gamma$. Korean J. Lipidol. 11: 79-83 (2001)
  4. Kim, Y.S. Transcriptional factors involved in insulin resistance. Korean J. Lipidol. 9: 28-35 (1999)
  5. Holst, D. and Grimaldi, P.A. New factors in the regulation of adipose differentiation and metabolism. Lipidology 13: 241-245 (2002)
  6. Michell, A.L. Becoming fat. Genes Develop. 16: 1-5 (2002) https://doi.org/10.1101/gad.964002
  7. Rosen, E.D., Hsu, C.H., Wang, X., Sakai, S., Freeman, M.W., Gonzalez, F.J. and Spiegelman, B.M. C/EBP$\alpha$ induces adipogenesis through PPAR$\gamma$: a unified pathway. Genes Develop. 16: 22-26 (2002) https://doi.org/10.1101/gad.948702
  8. Jiang, M.S and Lane, M.D. Sequential repression and activation of the CCAAT enchancer-binding protein-$\alpha$ (C/EBP$\alpha$) gene during adipogensis. Proc. Natl. Acad. Sci. USA 97: 12519-12523 (2000) https://doi.org/10.1073/pnas.220426097
  9. Tang, Q.Q. and Lane, M.D. Role of C/EBP homologous protein (CHOP-10) in the programmed activation of CCAAT/enhancerbinding protein-$\beta$ during adipogensis. Proc. Natl. Acad. Sci. USA 97: 12446-12450 (2000) https://doi.org/10.1073/pnas.220425597
  10. Chen, D. and Garg A. Monogenic disorders of obesity and body fat distribution. J. Lipid Res. 40: 1735-1746 (1999)
  11. Loftus, T.M. and Lane, M.D. Modulating the transcriptional control of adipogenesis. Genetics Develop. 7: 603-606 (1997)
  12. Spiegelman, B.A. and Flier, J.S. Adipogenesis and obesity: Rounding out the big picture. Cell 87: 377-389 (1996) https://doi.org/10.1016/S0092-8674(00)81359-8
  13. Xueming, G. and Kan, L. Analysis of gene expression profile during 3T3-L1 preadipocyte differentiation. Gene 251: 45-53 (2000) https://doi.org/10.1016/S0378-1119(00)00192-X
  14. Andrea, B., Laura, G. and Alexander, S. Rapamycin inhibits human adipocyte differentiation in primary culture. Obesity Res. 8: 249-254 (2000)
  15. Ren$e'$, K., Gert, S. and Hesselink, M.K.C. Optimization of Oil red O staining permits combination with immunofluorescence and automated quantification of lipids. Histochem. Cell. Biol. 116: 63-68 (2001)
  16. Ramirez-Zacarias, J.L., Castro-Muiiozledo, F. and Kuri-Harcuch, W. Quantiation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 493-497 (1992)
  17. Tracy, C.L. Purification and crystallization of rat liver fatty acid synthetase. Arch. Biochem. Biophys. 209: 613-619 (1981) https://doi.org/10.1016/0003-9861(81)90320-9
  18. Dils, R. and Carey, E. M. Methods in Enzymol. 35: 74-83 (1975) https://doi.org/10.1016/0076-6879(75)35140-9
  19. Kim, J.P., Jung, M.Y., Kim, J.P. and Kim, S.Y. Antiphotooxidative activity of protoberberines derived from Coptis japonica Makino in the chlorophyll-sensitized photooxidation of oil. J. Agric. Food Chem. 48: 1058-1063 (2000) https://doi.org/10.1021/jf9909297
  20. Pan, J.F., Yu, C., Zhu, D.Y., Zhang, H., Zeng, J.F., Jiang, S.H. and Ren, J.Y. Identification of three sulfate-conjugated metabolites of berberine chloride in healthy volunteers' urine after oral administration. Acta Pharmacol. Sin. 23: 77-82 (2002)
  21. Huang, K.C. The Pharmacology of Chinese Herbs, p. 289. CRC press, Tokyo, Japan (1993)
  22. Szeto, S., Yow, C.M.N. and Fung, K.W. Characterization of berberine on human cancer cells in culture. Turk. J. Med. Sci. 32: 363-368 (2002)
  23. Jeon, Y.W., Jung, J.W.., Kang, M.R., Chung, I.K. and Lee, W.T NMR studies on antitumor drug candidates, berberine and berberrubine. Bull. Korean Chem. Soc. 23: 391-394 (2002) https://doi.org/10.5012/bkcs.2002.23.3.391
  24. Mitani, N., Murakami, K., Yamaura, T., Ikeda, T. and Saiki, I. Inhibitory effect of berberine on the mediastinal lymph node metastasis produced by orthotopic implantation of Lewis lung carcinoma. Cancer Lett. 165: 35-42 (2001) https://doi.org/10.1016/S0304-3835(00)00710-2
  25. Iwasa, K., Moriyasu, M., Yamori, T., Turuo, T., Lee, D.U. and Wolfgang, W. In vitro cytotoxicity of the protoberberine-type alkaloids. J. Nat. Prod. 64: 896-898 (2001) https://doi.org/10.1021/np000554f
  26. Park, K.S., Kang, K.C., Kim, J.H., Adams, D.J., lohng, T.N. and Paik, Y.K. Differentiation inhibitory effects of protoberberines on sterol chitin biosyntheses in Candida albicans. British J. Antimicrob. Chemother. 43: 667-674 (1999) https://doi.org/10.1093/jac/43.5.667
  27. Uchiyama, T., Kamikawa, H. and Ogita, Z. Anti-ulcer effect of extract from Phellodendri cortex. Yakugaku Zasshi 109: 672-676 (1989)
  28. Sabir, M. and Bhide, N.K. Study of some pharmacological actions of berberine. Indian J. Physiol. Pharmacol. 15: 111-132 (1971)
  29. Evan, D.R., Christopher, J.W., Pere, P. and Bruce, M.S. Transcriptional regulation of adipogenesis. Genes Develop. 14: 1293-1307 (2000)
  30. Robert, M.C., Robert, E.L. and Robert, E.M. Jr. Molecular regulation of adipocyte differentiation. Cell Develop. BioI. 10: 3-10 (1999) https://doi.org/10.1006/scdb.1998.0276