Protective Effect of Isoflavone, Genistein from Soybean on Singlet Oxygen Induced Photohemolysis of Human Erythrocytes

$^1O_2$으로 유도된 사람 적혈구의 광용혈에 있어서 대두의 아이소플라본인 제니스테인의 보호작용

  • Park, Soo-Nam (Department of Fine Chemistry, Seoul National University of Technology)
  • 박수남 (서울산업대학교 정밀화학과)
  • Published : 2003.06.01

Abstract

Protective effects of natural components including genistein (4',5,7-trihydroxyisoflavone) from Glycine max MERRILL on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. Genistein $(10{\sim}100\;{\mu}m)$ suppressed photohemolysis in a concentration-dependent manner, and was more effective than the lipid peroxidation chain blocker, ${\alpha}$-tocopherol (Vit. E). Glycoside of genistein, genistin, the water-soluble antioxidant, L-ascorbate, and the iron chelator, myo-inositol hexaphosphoric acid dodecasodium salt (sodium phytate) did not exhibit protective effect against photohemolysis. L-Ascorbate and sodium phytate stimulated photohemolysis at high concentration $(500\;{\mu}m)$. ${\alpha}$-Carotene 3,3'-diol (lutein), a singlet oxygen $(^1O_2)$ quencher, exhibited pronounced protective effect, an indication that $^1O_2$ is important in photohemolysis sensitized by rose-bengal. Reactive oxygen scavenging activities $(OSC_{50})$ of natural antioxidants including genistein on reactive oxygen species (ROS) generated in $Fe^{3+}-EDTA/H_2O_2$ system using the luminol-dependent chemiluminescence assay were in the order of sodium phytate > L-ascorbate > ${\alpha}$-tocopherol > genistein > genistin. $OSC_{50}$ value of genistein, genistin, ${\alpha}$-tocopherol, L-ascorbate, and sodium phytate were 41.0, 109.0, 9.0, 5.2, and $0.56{\mu}m$ respectively. The order of free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activity $(FSC_{50})$ was L-ascorbate > ${\alpha}$-tocopherol > genistein > genistin. These results indicate that genistein can function as an antioxidant in biological systems, particularly skin exposed to solar UV radiation by scavenging $^1O_2$ and other ROS, and to protect cellular membranes against ROS.

자외선에 노출된 피부에서 생성된 활성산소종에 의한 산화적 스트레스는 세포 구성 성분들을 손상시키고 궁극적으로는 피부 광노화 및 발암을 야기시킬 수 있다. 이 연구에서는 대두(Glycine max MERRILL)의 성분인 genistein(4',5,7-trihydroxyisoflavone)을 포함하는 몇 가지 천연 황산화제들에 대하여 로즈벵갈로 증감된 사람 적혈구의 광용혈에 대한 보호효과를 조사하였다. Genistein$(10-100\;{\mu}M)$은 농도-의존적으로 광용혈을 억제하였다. 그리고 지질 과산화 연쇄반응의 차단제인 ${\alpha}$-tocopherol보다도 더 효과적이었다. 그러나, Genitein의 배당체인 genistin, 소용성 항산화제인 L-ascorbate, 철-킬레이트제인 sodium phytate는 광용혈에 대하여 보호 효과를 나타내지 않았다. 오히려 보다 높은 농도$(500\;{\mu}M)$에서는 L-ascorbate와 sodium phytate 모두 광용혈을 촉진시켰다. 반면, $^1O_2$ 소광제로 알려진, ${\alpha}$-carotene 3,3'-diol은 현저한 보호 효과를 보여주었다. 이 결과는 로즈벵갈로 증감된 광용혈에 있어서 $^1O_2$이 중요함을 가리킨다. Luminol-의존성 화학발광법을 이용하여, $Fe^{3+}-EDTA/H_2O_2$ 계에서 생성된 ROS에 대한 몇가지 천연 항산화제들의 ROS 소거활성을 측정하였다. 활성 산소 소거활성$(OSC_{50})$의 크기는 sodium phytate > L-ascorbate>${\alpha}$-tocopherol > genistein > genistin순이었다. Gnistein, genistin, ${\alpha}$-tocopherol, L-ascorbate 및 sodium phytate의 활성산소 소거활성$(OSC_{50})$은 각각 41.0, 109.0, 9.0, 5.2, 및 $0.56{\mu}M$이었다. Free radical 소거활성$(FSC_{50})$의 크기는 L-ascorbate > ${\alpha}$-tocopherol > genistein > genistin순으로 나타났다. 이상의 결과들은 genistein이 $^1O_2$ 혹은 다른 ROS를 소거함으로써 그리고 ROS에 대항하여 세포막을 보호함으로써 생체계, 특히 태양 자외선에 노출된 피부에서 항산화제로서 작용할 수 있음을 가리킨다.

Keywords

References

  1. Cadenas, E. Biochemistry of oxygen toxicity. Ann. Rev. Biochem. 58: 79-110 (1989) https://doi.org/10.1146/annurev.bi.58.070189.000455
  2. Fantone, J.C. and Ward, P.A. Role of oxygen-derived free radicals and metabolites in leukocyte dependent intlammatory reaction. Ann. J. Path. 107: 397-418 (1982)
  3. Steinbeck, M.J., Khan, A.U. and Karnovsky, M.J. Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap. J. BioI. Chem. 267: 13425-13433 (1992)
  4. Foote, C.S. Photosensitized oxidation and singlet oxygen; consequences in biological systems. In: Free Radical in Biology. Pryor, W.A. (ed.). Acdemic press, New York, USA (1976)
  5. Packer, L. Oxidative stress, antioxidant, aging and disease, pp. 114. In: Oxidative Stress and Aging. Cutler, R.G., Packer, L., Bertram, J. and Mori, A. (eds.). Birkhauser Verlag, Basel, Switzerland (1995)
  6. Pincemail, J. Free radicals and antioxidants in human diseases,pp. 83-98. In: Analysis of Free Radicals in Biology Systems. Favier, A.E., Cadet, J., Kalyanaraman, B., Fontecave, M. and Pierre, J.-L. (eds.). Birkhauser Verlag, Basel, Switzerland (1995)
  7. Park, S.N. Effects of tlavonoids and other phenolic compounds on reactive oxygen-mediated biochemical reactions. Ph.D. Dissertation, Seoul National University, Seoul, Korea (1989)
  8. Park, S.N. Skin aging and antioxidant. J. Soc. Cos. Sci. Kor. 23: 75-132 (1997)
  9. Jurkiewicz, B.A. and Buettner, G.R. Ultraviolet light-induced free radical formation in skin: An electron paramagnetic resonance study. Photochem. Photobiol. 59: 1-4 (1994) https://doi.org/10.1111/j.1751-1097.1994.tb04993.x
  10. Packer, L. Ultaviolet radiation (UVA, UVB) and skin antioxidants. pp. 239-253 In: Free Radical Damage and Its Control. Rice-Evans, C.A. and Burdon, RH. (eds.). Elsevier Science, St. Louis, MO, USA (1994)
  11. Jurkiewicz, B.A., Bissett, D.L. and Buettner, G.R. Effect of topically applied tocopherol on ultraviolet radiation-mediated free radical damage in skin. J. Invest. Dermatol. 104: 484-488 (1995) https://doi.org/10.1111/1523-1747.ep12605921
  12. Thomas, J.P. and Girotti, A.W. Photogeneration of singlet oxygen by membrane bound hematoporphyrin derivative. Photochem. Photobiol. 47: 79S (1988)
  13. Foote, C.S. Definition of Type I and Type II photosensitized oxidation. Photochem. Photobiol. 54: 659 (1991) https://doi.org/10.1111/j.1751-1097.1991.tb02071.x
  14. Darr, D. and Fridovich, I. Free radicals in cutaneous biology. J. Invest. Dermatol. 102: 671-675 (1994) https://doi.org/10.1111/1523-1747.ep12374036
  15. Scharffetter-Kochanek, K. Photoaging of the connective tissue of skin: Its prevention and therapy, antioxidants in disease mechanism and therapy. Adv. Pharmacol. 38: 639-655 (1997)
  16. Kanofsky, J.R., Hoogland, H., Wever, R. and Weiss, S.J. Singlet oxygen production by human eosinophils. J. BioI. Chem. 263: 9692-9696 (1988)
  17. Vile, G.F. and Tyrrell, R.M. UVA radiation-induced oxidative damage to lipid and protein in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen. Free Rad. BioI. Med. 18: 721-730 (1995) https://doi.org/10.1016/0891-5849(94)00192-M
  18. Tyrrell, R.M. and Pidoux, M. Singlet oxygen involvement in the inactivation of cultured human fibroblast by UVA and near visible radiations. Photochem. Photobiol. 49: 407-412 (1989) https://doi.org/10.1111/j.1751-1097.1989.tb09187.x
  19. Scharffetrer-Kochanck, K., Wlaschek, M., Briviba, K. and Sics, H. Singlet oxygen induces collagenase expression in human skin fibroblasts. FEBS Lett. 331: 304-306 (1993) https://doi.org/10.1016/0014-5793(93)80357-Z
  20. Wlaschek, M., Briviba, K., Stricklin, G.P., Sies, H. and Scharffetter- Kochanek, K. Singlet oxygen may mediate the ultraviolet A induced synthesis of interstitial collagenase. J. Invest. Derrnatol. 104: 194-198 (1995) https://doi.org/10.1111/1523-1747.ep12612751
  21. Oikarinen, A., Karvonen, J., Uitto, J. and Hannuksela, M. Connective tissue alterations in skin exposed to natural and therapeutic UV-radiation. Photodermatology 2: 15-26 (1985)
  22. Oikarinen, A. and Kallioinen, M. A biochemical and immunohistochemical study of collagen in sun-exposed and protected skin. Photoderrnatology 6: 24-31 (1989)
  23. Kligman, L.H. UVA induced biochemical changes in hairless mouse skin collagen: A contrast to UVB effects. In: Biological Responses to Ultraviolet A Radiation. Urbach, F. (ed.). Valdemar, Overland Park, USA (1992)
  24. Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S., Itoh, N., Shibuya, M. and Fukami, Y. Genistein, a specific inhibitor of tyrosine- specific protein kinases. J. BioI. Chem. 262: 5592-5595 (1987)
  25. Barnes, S. Effect of genistein on in vitro and in vivo models of cancer. J. Nutr. 125 (suppl): 777s-783s (1995)
  26. Messina, M.J. Soyfoods: The role in disease prevention and treatment, pp. 442-477. In: Soybeans, Chemistry, Technology, and Utilization. Liu, K. (ed.). Chapman & Hall, London, UK (1997)
  27. Ravanti, L., Heino, J., Lopez-Otin, C. and Kahari, Y.-M. Induction of collagenase-3 (MMP-13) expression in human skin fibroblasts by three-dimensional collagen is mediated by p38 mitogenactivated protein kinase. J. BioI. Chem. 274: 2446-2455 (1999) https://doi.org/10.1074/jbc.274.4.2446
  28. Wang, Y., Yaping, E., Zhang, X., Lebwohl, M., DeLeo, V. and Wei, H. Inhibition of ultraviolet B (UVB)-induced c-fos and c-jun expression in vivo by a tyrosine kinase inhibitor genistein. Carcinogenesis 19: 649-654 (1998) https://doi.org/10.1093/carcin/19.4.649
  29. Schmid D. and Zulli, F. Topically applied soy isoflavones increase skin thickness. Cosmet. Toil. Mag. 117: 45-50 (2002)
  30. Park, S.N., Choi, S.W., Boo, Y.C., Kim, C.K. and Lee, T.Y. Effects of flavonoids of ginseng leaves on Erythrocyte membranes against singlet oxygen caused Damage. Korean J. Ginseng Sci. 14: 191-199 (1990)
  31. Kudou, S., Fleury, Y., Welti, D., Magnolato, D., Uchida, T., Kitamura, K. and Okubo, K. Malonyl isoflavone glycosides in soybean seeds (Glycine max Merrill). Agric. BioI. Chem. 55: 2227-2233 (1991) https://doi.org/10.1271/bbb1961.55.2227
  32. Aruoma, O.I., Halliwell, B., Gajewski, E. and Dizdaroglu, M. Damage to the bases in DNA Induced by hydrogen peroxide and ferric ion chelates. J. BioI. Chem. 264: 20509-20512 (1989)
  33. Sharov, V.S., Kazamanov, V.A. and Vladimirov, Y.A. Selective sensitizarion of chemiluminescence resulted from lipid and oxygen radical reactions. Free Rad. BioI. Med. 7: 237-242 (1989) https://doi.org/10.1016/0891-5849(89)90130-5
  34. Murphy, M.E. and Sies, H. Visible-range low-level chemiluminescence in biological systems, pp. 595-610. In: Oxygen Radicals in Biological Systems, Oxygen Radicals and Antioxidants. Packer, L. and Glazer, A.N. (eds.). Academic Press, New York, USA (1993)
  35. Fujita, Y., Uehara, I., Morimoto, Y., Nakashima, M., Hatano, T. and Okuda, T. Studies on inhibition mechanism of autoxidation by tannins and flavonoids. Yakugaku Zasshi 108: 129-135 (1988)
  36. Bissett, D.L., Chatterjee, R. and Hannon, D.P. Chronic ultraviolet radiation-induced increase in skin iron and the photoprotective effect of topically applied iron che1ators. Photochem. Photobiol. 54: 215-223 (1991) https://doi.org/10.1111/j.1751-1097.1991.tb02009.x
  37. Bissett D.L. and McBride, J.F. Iron content of human epidermis from sun-exposed and non-exposed body sites. J. Soc. Cosmet. Chem. 43: 215-217 (1992)
  38. Gutteridge, J.M.C., Rowley, D.A., Halliwell, B., Cooper, D.F. and Heeley, D.M. Copper and iron complexes catalytic for oxygen radical reactions in sweat from human athletes. Clinica Chimica Acta. 145: 267-273 (1985) https://doi.org/10.1016/0009-8981(85)90033-6
  39. Fahrenholtz, S.R., Doleiden, F.H., Trozolo, A.M. and Lamola, A.A. On the quenching of singlet oxygen by $\alpha$-tocopherol. Photochem.Photobiol. 20: 505-509 (1974) https://doi.org/10.1111/j.1751-1097.1974.tb06610.x
  40. Girotti, A.W., Thomas, J.P. and Jordan, J.E. Prooxidant and antioxidant effects of ascorbate on photosensitized peroxidation of ipids in erythrocyte membranes. Photochem. Photobiol. 41: 267-276 (1985) https://doi.org/10.1111/j.1751-1097.1985.tb03484.x
  41. Graf, E. Application of phytic acid. J. Am. Oil Chern. Soc. 60: 1861-1867 (1983) https://doi.org/10.1007/BF02901539
  42. Soriani, M. Hemadi, V. and Tyrrell, R.M. Modulation of c-jun and c-fos transcription by UVB and UVA radiations in human dermal fibroblasts and KB cells. Photochem. Photobiol. 71: 551-558 (2000) https://doi.org/10.1562/0031-8655(2000)071<0551:MOCJAC>2.0.CO;2
  43. Kick, G., Messer, G., Plewig, G., Kind, P. and Goetz, A.E. Strong and prolonged induction of c-jun and c-fos proto-oncogenes by photodynamic therapy. Br. J. Cancer 74: 30-36 (1996) https://doi.org/10.1038/bjc.1996.311
  44. Shao, Z.-M., Wu, J., Shen, Z.-Z. and Barsky, S.H. Genistein exerts multiple suppressive effects on human breast carcinoma cells. Cancer Res. 58: 4851-4857 (1998)
  45. Kim, M.H., Albertsson, P., Xue, Y., Nannmakk, U., Kitson, R.P. and Goldfarb, R.H. Expression of neutrophil collagenase (MMP8) in Jurkat T leukemia cells and its role in invasion. Anticancer Res. 21: 45-50 (2001)
  46. Wei, H., Ca, Q., Rahn, R., Zhang, X., Wang, Y. and Lebwohl, M. DNA structural integrity and base composition affect ultraviolet light-induced oxidative DNA damage. Biochemistry 37: 6485-6490 (1998) https://doi.org/10.1021/bi972702f
  47. Liu, Z. Lu, Y. Lebwohl, M. and Wei, H. PUVA (8-methoxy-psoralen plus ultraviolet A) induces the formation of 8-hydroxy-2'deoxyguanosine and DNA fragmentation in calf thymus DNA and human epidermoid carcinoma cells. Free Rad. Biol. Med. 27: 127-133 (1999) https://doi.org/10.1016/S0891-5849(99)00058-1
  48. Trieu, V.N., Dong, Y., Zheng, Y. and Uckun, F.M. In vivo antioxidant activity of genistein in a murine model of singlet oxygeninduced cerebral stroke. Radiat. Res. 152: 508-516 (1999) https://doi.org/10.2307/3580147
  49. Orie, N.N., Zidek, W. and Tepel, M. Reactive oxygen species in essential hypertension and non-insulin-dependent diabetes mellitus. Am. J. Hypertens. 12: 1169-1174 (1999) https://doi.org/10.1016/S0895-7061(99)00129-6