Optimized Condition of Genomic DNA Extraction and PCR Methods for GMO Detection in Potato

유전자재조합 감자의 검정을 위한 DNA분리 및 PCR검출의 최적조건 탐색

  • 신원선 (한국식품개발연구원 안전성연구팀) ;
  • 김명희 (한국식품개발연구원 안전성연구팀)
  • Published : 2003.08.01

Abstract

To compare the quality of genomic DNA extracted from potato for PCR detection, four different methods, such as silica-based membrane method, silica-coated bead method, STE solution treatment, and CTAB-phenol/chloroform method, were evaluated. Also, to remove an excessive carbohydrate from the potato, ${\alpha}$- and ${\beta}$-amylase were used individually and in combination. When used both silica-based membrane method and silica-coated bead method combined with enzymes, the genomic DNAs were extracted from the raw potato with high purity for PCR. However, the silica-coated head method combined with enzyme treatment was the most efficient for extraction of the genomic DNA from the frozen fried potatoes. When applied with STE solution, the highly purified DNA was extracted from the raw potatoes without enzyme treatment in adequate yield for PCR. In cases of processed potatoes, such as frozen-fried potato and fabricated potato chips, CTAB-phenol/chloroform method is mostly feasible for DNA extraction and PCR efficacy at high sensitivity. As the results of PCR amplification, 216bp of PCR product was detected on 2% agarose gel electrophoresis, but any amplicons derived from New leaf and New leaf Y gene was not detected in any sample.

국내에서 시판되는 감자와 수입 감자스낵류로부터 상용 DNA 추출 kit 및 CTAB-phenol/chloroform 추출법등을 이용하여 시료특성에 따른 genomic DNA를 추출방법을 선정하고 PCR 정성검사를 실시하였다. 생감자의 경우 STE 용액으로 과량의 전분을 제거한 다음 DNA를 추출한 경우 순도 높은 DNA를 추출할 수 있었으며 상용 추출 kit를 이용한 경우 lysis buffer와 함께 ${\alpha}-/{\beta}$-amylase를 각각 또는 혼합으로 처리하거나 추출된 DNA 용액에 마지막 단계에서 효소를 처리한 시료군에서 고순도의 DNA를 추출할 수 있었으며, 효소 처리군에서는 ${\alpha}-/{\beta}$-amylase를 혼합으로 처리한 경우에 DNA 추출수율이 높았다. 냉동가공감자의 경우 silica-coated bead법을 이용하여 효소를 처리한 경우와 CTAB-페놀 클로로포름 처리군에서 DNA가 추출되었다. 또한, 각 방법으로 추출한 DNA에 대하여 감자의 내인성 유전자인 Pss 프라이머를 사용하여 PCR을 한 결과 모든 시료에서 추출된 DNA에 대하여 내부표준유전자 증폭산물이 검출되었다. 고도의 가공처리를 거친 수입 감자스낵(fabricated potato chips)과 냉동가공 감자(frozen fried potato) 등은 계면활성제인 CTAB(cetyl trimethyl ammonium bromide)과 페놀-클로로포름 혼합액을 이용하여 추출하고 이를 template로 하여 PCR 증폭을 실시하였다. 그 결과, Fig. 8에 제시한 바대로 감자의 내인성 유전자인 Pss 특이적 산물인 216bp의 산물이 냉동감자가공품과 감자칩에서 검출되었으며 재조합유전자인 New leaf plus 유래의 증폭산물(234bp)와 New lear Y유래의 증폭산물(225bp)는 검출되지 않았다. 본 실험의 결과 시료의 가공특성과 적용한 추출 kit 및 방법에 따라 genomic DNA 순도 및 추출수율이 크게 차이가 났으며 이것이 결국 PCR 결과에 의음성 혹은 의양성 등에 영향을 미치게 될 것으로 판단된다. 또한, 동일한 DNA추출방법에 의해서도 DNA가 추출되지 않은 경우가 있어서 동일한 시료에서 2회 반복 추출하는 것이 의음성결과를 피할 수 있는 방법으로 판단된다.

Keywords

References

  1. James, C. Global review of commercialized transgenic crops: 2001, ISAAA briefs No. 24. pp. 1-31, Ithaca, NY (2001)
  2. Ministry of Agriculture and Forest. MAF's GM-food Labelling Standards. Ministry of Agriculture and Forest. No. 2000-31, Seoul, Korea (2000)
  3. KFDA. Biotech Labelling Standards for Processed Foods. Korea Food and Drug Administration, No. 2000-43, Seoul, Korea (2000)
  4. KFDA. Biotech Labelling Standards for Processed Foods (revised). Korea Food and Drug Administration, No. 2001-43, Seoul, Korea (200 I)
  5. Jaccaud, E., Hohne, M. and Meyer, R. Assessment of screening methods for the identification of genetically modified potatoes in raw materials and finished products. J. Agric. Food Chem. 51: 550-557 (2003) https://doi.org/10.1021/jf0208031
  6. Vollenhofer, S., Burg, K., Schmidt, J. and Kroath, H. Genetically modified organisms in food-screening and specific detection by polymerase chain reaction. J. Agric. Food Chem. 47: 5038-5043 (1999) https://doi.org/10.1021/jf990353l
  7. Meyer, R., Chardonnens. E, Huber, P. and Luthy, J. Polymerase chain reaction (PCR) in the quality and safety assurance of food: detection of soya in processed meat products. Z. Lebnsm. Unters. Forsch. 203: 339-344 (1996) https://doi.org/10.1007/BF01231072
  8. Vaitilingom, M., Pijinenburg, H., Gendre, F. and Brignon, P. Realtime quantitative PCR detection of genetically modified maximizer maize and roundup ready soybean in some representative foods. J. Agric. Food Chem. 47: 5261-5266 (1999) https://doi.org/10.1021/jf981208v
  9. Wurz, A., Bluth, A., Zeitz, P., Pfeifer, C. and Willmund, D. Quantitative analysis of genetically modified organisms (GMO) in processed food by PCR-based methods. Food Control 10: 385-389 (1999) https://doi.org/10.1016/S0956-7135(99)00080-8
  10. Hubner, P., Studer, E. and Luthy, J. Quantitative competitive PCR for the detection of genetically modified organisms in food. Food Control 10: 353-358 (1999) https://doi.org/10.1016/S0956-7135(99)00074-2
  11. Kuiper, H.A. Summary report of the ILSI Europe workshop on detection methods for novel foods derived from genetically moditied organisms. Food Control 10: 339-349 (1999) https://doi.org/10.1016/S0956-7135(99)00072-9
  12. Gilbert, J. Sampling of raw materials and processed foods for the presence of GMOs. Food Control 10: 363-365 (1999) https://doi.org/10.1016/S0956-7135(99)00076-6
  13. Brodmann, P. DNA-extraction: Important step of the quantitative detection of GMO in food matrices. New Food 5:57-61 (2001)
  14. Kaufman, B., Richards, S. and Dierig, D. DNA isolation method for high polysaccharide Lesqurella species. Industrial Crops Products 9: 111-114 (1999) https://doi.org/10.1016/S0926-6690(98)00021-1
  15. KFDA. Guideline of Detection Method for Genetically Modified Food. Korea Food and Drug Administration, Seoul, Korea (2002)
  16. Kim, D.H. Polysaccharide in food, pp. 255-267. In: Food Chemistry, Tamgudang Inc., Seoul, Korea (1992)