Antimicrobial Activity of Garlic Juice against Escherichia coli O157:H7

마늘즙의 Escherichia coli O157:H7에 대한 항균작용

  • Kim, Myung-Hee (Food Safety Lab, Korea Food Research Institute) ;
  • Kim, So-Young (Food Safety Lab, Korea Food Research Institute) ;
  • Shin, Weon-Sun (Food Safety Lab, Korea Food Research Institute) ;
  • Lee, Jun-Soo (Department of Food Science and Technology, Chungbuk National University)
  • Published : 2003.08.01

Abstract

The antimicrobial activity of fresh garlic juice against Escherichia coli O157:H7 was investigated. When E. coli O157:H7 was cultured for 18 hr in the trypticase soy broth containing 1%, 3%, and 5% garlic juice, viable cell number of E. coli O157:H7 was reduced to $2.3{\times}10^2\;CFU/mL$ at 5% from $7{\times}10^8\;CFU/mL$ at the non-treated culture, respectively. The inhibitory effects of the ground beef treated with 3%, 6%, and 10% garlic juice against E. coli O157:H7 was significantly enhanced with approximate 2 log-reduction compared to that of ground beef without garlic. There was no significant difference in the inhibition of E. coli O157:H7 among the groups with different amounts of garlic juice (p<0.05). These results suggest that garlic juice may function well as a natural preservative in food system.

E. coli O157:H7에 대한 마늘즙액의 항균작용을 알아보기 위하여 마늘즙액의 처리량을 농도별 조건을 달리한 후 생균수 측정을 실시하였다. 마늘즙액 농도가 1%에서는 첨가하지 않았을 때에 비해 E. coli O157:H7의 생균수가 약간 줄어들었으나 마늘즙 처리량이 3%에서는 약 5 log, 마늘즙 처리량이 5%로 증가했을 때는 약 6 log의 생균수 감소를 보였다. 마늘즙의 식육내 항균작용 효과를 알아본 결과, 저육에서 3%, 6%, 10%의 마늘즙 농도별 차이에 따른 E. coli O157:H7에 대한 항균효과는 크게 다르지 않음을 알 수 있었다. 마늘즙의 가장 뚜렷한 저해 효과는 저장 9일에 나타나 약 2 log의 생균수 감소가 관찰되었다. 저장 9일 이후에는 E. coli O157:H7의 생균수가 다시 증가하는 것으로 미루어 마늘즙의 항균 효과가 소실되는 것으로 추정된다. 본 실험의 결과, 마늘의 조미료로써의 기능과 더불어 천연 방부제로써의 항균효과에 관한 기초 자료를 얻을 수 있었다.

Keywords

References

  1. Byun, P.H., Kim, W.J. and Yoon, S.K Effects of extraction conditions on the functional properties of garlic extracts. Korean J. Food Sci. Technol. 33: 507-513 (2001)
  2. Nishimura, H., Hanny, W. and Mizutani, J. Volatile flavor components and antithrombotic agents: Vinyldithiins from Allium victorialis L. J. Agric. Food Chem. 36: 563-568 (1988) https://doi.org/10.1021/jf00081a039
  3. Cavallito, C.J. and Bailey, J.H. Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and antibacterial action. J. Am. Chem. Soc. 66: 1950-1956 (1944) https://doi.org/10.1021/ja01239a048
  4. Kim, S.H., Park, K.Y., Suh, M.J. and Chung, H.Y. Effect of garlic (Allium sativum) on glutathione S-transferase activity and the level of glutathione in the mouse liver. J. Korean Soc. Food Nutr. 23: 436-443 (1994)
  5. Ruffin, J. and Hunter, S.A. An evaluation of the side effect of garlic as an antihypertensive agent. Cytobios 37: 85-89 (1983)
  6. Kamanna, V.S. and Chandrasekhara, N. Biochemical and physiological effects of garlic (Allium sativum Linn.). J. Sci. Ind. Res. 42: 353-357 (1983)
  7. Small, L.D., Bailely, J.H. and Cavallito, C.J. Alkyl thiolsulfinates. J. Am. Chem. Soc. 69: 1710-1716 (1947) https://doi.org/10.1021/ja01199a040
  8. Brodnitz, M.H., Pascale, J.V. and Van Derslice, L. Flavor components of garlic extract. J. Agric. Food Chem. 19: 273-275 (1971) https://doi.org/10.1021/jf60174a007
  9. Yu, T.H., Wu, C.M. and Liou, Y.C. Volatile compounds from garlic. J. Agric. Food Chem. 37: 725-730 (1989) https://doi.org/10.1021/jf00087a032
  10. Block, E., Naganathan, S., Putman, D. and Zhao, S. Alllium chemistry: HPLC analysis of thiolsulfinates from onion, garlic, wild garlic (Ramsoms), leek, scallion, shallot, elephant (greatheaded) garlic, chive, and chinese chive. Uniquely high allyl to methyl ratios in some garlic samples. J. Agric. Food Chem. 40:2418-2430 (1992) https://doi.org/10.1021/jf00024a017
  11. Small, L.D., Bailey, J.H. and Cavallito, C.J. Comparison of some properties of thiosulfonates and thiosulfinates. J. Am. Chem. Soc. 71: 3565-3571 (1949) https://doi.org/10.1021/ja01178a531
  12. AI-Delaimy, K.S. and Ali, S.H. Antibacterial action of vegetable extracts on the growth of pathogenic bacteria. J. Sci. Food Agric. 21: 110-112(1970) https://doi.org/10.1002/jsfa.2740210214
  13. Tynecka, Z. and Gos, Z. The inhibitory action of garlic (Allium sativum. L.) on growth and respiration of some microorganisms. Acta Microbiol. Pol. Ser. B. Microbiol. Appl. 5: 51-62 (1973)
  14. Dababneh, B.F.A. and Al-Delaimy, K.S. Inhibition of Staphylococcus aureus by garlic extract. Lebensm. Wiss. Technol. 17: 29-31 (1984)
  15. Karaioannoglou, P.G., Mantis, A.J. and Panetsos, A.G. The effect of garlic extract on lactic acid bacteria (Lactobacillus plantarum) in culture media. Lebensm. Wiss. Technol. 10: 148-150 (1977)
  16. Conner, D.E. and Beuchat, L.R. Effects of essential oils from plants on growth of food spoilage yeasts. J. Food Sci. 49: 429-434 (l984) https://doi.org/10.1111/j.1365-2621.1984.tb12437.x
  17. Saleem, Z.M. and AL-Delaimy, K.S. Inhibition of Bacillus cereus by garlic extracts. J. Food Prot. 45: 1007-1009 (1982) https://doi.org/10.4315/0362-028X-45.11.1007
  18. DeWit, J.C., Notermans, S., Gorin, N. and Kampelmacher, E.H. Effect of garlic oil or onion oil on toxin production by Clostridium botulinum in meat slurry. J. Food Prot. 42: 222-224 (1979) https://doi.org/10.4315/0362-028X-42.3.222
  19. Mantis, A.J., Koidis, P.A. Karaioannoglou, P.G. and Panetsos, A.G. Effect of garlic extract on food poisoning bacteria, Cl. perfringens. Lebensm. Wiss. Technol. 12: 330-332 (1979)
  20. Barone, F.E. and Tansey, M.R. Isolation, purification, identification, synthesis, and kinetics of activity of the anticandidal component of Allium sativum, and a hypothesis for its mode of action. Mycologia 69: 793-825 (1977) https://doi.org/10.2307/3758870
  21. Nagourney, R.A. Garlic: medicinal food or nutritious medicine? J. Med. Food 1: 13-28 (1998) https://doi.org/10.1089/jmf.1998.1.13
  22. Su, C. and Brandt, L.J. Escherichia coli 157:H7 infection in humans. Ann. Intern. Med. 123: 698-714 (1995) https://doi.org/10.7326/0003-4819-123-9-199511010-00009
  23. Samelis, J., Sofos, J.N., Kendall, P.A. and Smith, G.C. Effect of acid adaptation on survival of Escherichia coli O157:H7 in meat decontamination washing fluids and potential effects of organic acid interventions on the microbial ecology of the meat plant environment. J. Food Prot. 65: 33-40 (2002) https://doi.org/10.4315/0362-028X-65.1.33
  24. Kyung, K.H., Park, K.S. and Kim, Y.S. Isolation and characterization of bacteria resistant to the antimicrobial activity of garlic. J. Food Sci. 61: 226-229 (1996) https://doi.org/10.1111/j.1365-2621.1996.tb14766.x
  25. Hathcox, A.K. and Beuchat, L.R. Inhibitory effects of sucrose fatty acid esters, alone and in combination with ethylenediaminetetraacetic acid and other organic acids, on viability of Escherichia coli O157:H7. Food Microbiol. 13: 213-225 (1996) https://doi.org/10.1006/fmic.1996.0027
  26. Kennedy, M., O'Rourke, A.-L., McLay, J. and Simmonds, R. Use of a ground beef model to assess the effect of the lactoperoxidase system on the growth of Escherichia coli OI57:H7, Listeria monocytogenes and Staphylococcus aureus in red meat. Int. J. Food Microbiol. 57: 147-158 (2000) https://doi.org/10.1016/S0168-1605(99)00208-1
  27. Moon, G.-S., Kim, W.J. and Kim, M. Synergistic effects of bacteriocin- producing Pediococcus acidilactici KIO and organic acids on inhibiting Escherichia coli O157:H7 and applications in ground beef. J. Microbiol. Biotechnol. 1: 936-942 (2002)
  28. Fang, T.J. and Tsai, H.-C. Growth patterns of Escherichia coli O157:H7 in ground beef treated with nisin, chelators, organic acids and their combinations immobilized in calcium alginate gels. Food Microbiol. 20: 243-253 (2003) https://doi.org/10.1016/S0740-0020(02)00081-3