신규 기능성당 L-아라비노스: 생리활성, 이용, 생산방법

Novel Functional Sugar L-Arabinose: Its Functionality, Uses and Production Methods

  • 윤향식 (충청북도농업기술원 식품개발팀) ;
  • 김정호 (서원대학교 식품영양학과) ;
  • 김태집 (충북대학교 식품공학과 생물건강산업개발연구센터) ;
  • 금인경 (충북대학교 식품공학과 생물건강산업개발연구센터) ;
  • 한남수 (충북대학교 식품공학과 생물건강산업개발연구센터)
  • Yoon, Hyang-Sik (Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Kim, Chung-Ho (Department of Food Nutrition, Seowon University) ;
  • Kim, Tae-Jip (Department of Food Science and Technology, Research Center for Bioresource and Health (RCBH), Chungbuk National University) ;
  • Keum, In-Kyung (Department of Food Science and Technology, Research Center for Bioresource and Health (RCBH), Chungbuk National University) ;
  • Han, Nam-Soo (Department of Food Science and Technology, Research Center for Bioresource and Health (RCBH), Chungbuk National University)
  • 발행 : 2003.10.01

초록

L-Arabinose inhibits intestinal sucrase in an uncompetitive manner and, consequently, inhibits the absorption of sucrose from the small intestine. The addition of $3{\sim}5%$ L-arabinose to sucrose causes about a 60% reduction in the digestion of sucrose in the small intestine. In addition, it reduces the increase of the levels of blood sugar, insulin, triglycerides, and cholesterol caused by the ingestion of sucrose. The taste of L-arabinose is quite similar to that of sucrose, with approximately 50% the sweetness of sucrose. Naturally occurring arabinose is an L-form and a noncaloric sugar that is not metabolized in animals. L-Arabinose is a common component of plant cell walls and is widely distributed in the plant kingdom. It is the main component of cereal hemicellulose, such as corn, wheat, and rice, pectic substances of beet, apple pulps, and some plant gums. L-Arabinose can be produced by either the acid hydrolysis or the enzymatic hydrolysis of some plant gums, corn fiber, and beet pulps. This novel sugar has a potential to be used as a food additive for improving obesity and maintaining good health.

키워드

참고문헌

  1. Hizukuri, S. Nutritional and physiological functions and uses of L-arabinose. J. Appl. Glycosci. 46: 159-165 (1999) https://doi.org/10.5458/jag.46.159
  2. Semensa, G. and von Balthazar, A.K. Steady-state kinetics of rabbit intestinal sucrase: kinetic mechanism, $Na^+$ activation, inhibition by Tris (hydroxymethyl) aminomethane at the glucose subsite. Eur. J. Biochem. 41: 149-162 (1974) https://doi.org/10.1111/j.1432-1033.1974.tb03255.x
  3. Seri, K., Sanai. K., Matsuo, N., Kawakubo, K., Xue, C. and Inoue, S. L-Arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism 45: 1368-1374 (1996) https://doi.org/10.1016/S0026-0495(96)90117-1
  4. Sanai, K., Seri, K. and Inoue, S. Inhibition of sucrose digestion and absorption by L-arabinose in rats. J. Jpn. Soc. Nutr. Food Sci. 50: 133-137 (1997) https://doi.org/10.4327/jsnfs.50.133
  5. Inoue, S., Sanai, K. and Seri, K. Effect of L-arabinose on blood glucose level after ingestion of sucrose-containing food in human. J. Jpn. Soc. Nutr, Food Sci. 53: 243-247 (2000) https://doi.org/10.4327/jsnfs.53.243
  6. Osaki, S., Kimura, T., Sugimoto, T., Hizukuri S. and Iritani, N.L-Arabinose feeding prevents increases due to dietary sucrose in lipogenic enzymes and triacylglycerol levels in rats, J. Nutr. 131: 796-799 (2001) https://doi.org/10.1093/jn/131.3.796
  7. Fruichi, Y., Taniguchi, A., Horibe, A., Umekawa, H., Takahashi, T., Katsuro, M. and Imai, T. Effect of water-soluble dietary fiber prepared from corn hull on lipid metabolism in rats. J. Jpn. Soc. Nutr, Food Sci. 47: 29-34 (1994) https://doi.org/10.4327/jsnfs.47.29
  8. Oda, T., Aoe, S., Sanada, H. and Ayano, Y. Effects of soluble and insoluble fiber preparations isolated from oat, barley and wheat on liver cholesterol accumulation in cholesterol-fed rats. J. Nutr. Sci. Vit. 39: 73-79 (1993) https://doi.org/10.3177/jnsv.39.73
  9. Oda, T., Aoe, S., Sanada, H. and Ayano, Y. Effects of oat, barley and wheat on liver and plasma cholesterol concentrations in cholesterol-fed rats. J. Jpn. Soc. Nutr. Food Sci. 45: 560-563 (1992) https://doi.org/10.4327/jsnfs.45.560
  10. Egashira, Y., Kubota, H., Okuda, Y., Takeuchi, M., Ohta, F. and Ayano, Y. Effect of cereal bran hemicellulose on growth rate, digestibility and gastrointestinal transit time in rats. J. Jpn. Soc. Nutr. Food Sci. 45: 71-77 (1992) https://doi.org/10.4327/jsnfs.45.71
  11. Arnal-Peyrot, F. and Adrian, J. Metabolism of cereal pentosans in rat. Int. J. Vita. Nutr. Res. 44: 543-552 (1974)
  12. Cori, F. The fate of sugar in the animal body. 1. The rate of absorption of hexoses and pentoses from the intestinal tract. J.BioI. Chem. 66: 691-715 (1925)
  13. Bonger, P.H. Alimentary absorption of reducing sugars by embryos and young chicks. Proc, Soc. Exp. BioI. Med. 107: 263-267 (1961) https://doi.org/10.3181/00379727-107-26596
  14. Wagh, P.V. and Waibel, P.E. Alimentary absorption of L-arabinose and D-xylose in chicks. Proc. Soc. Exp. BioI. Med. 124: 421-424 (1967) https://doi.org/10.3181/00379727-124-31755
  15. Schutte, J,B., de Jong, J., van Weerden, E.J. and Tamminga, S.Nutritional implications of L-arabinose in pigs. Br. J. Nutr. 68: 195-207 (1992) https://doi.org/10.1079/BJN19920077
  16. Segal, S. and Foley, J.B. The metabolic fate of $C^1^4$ labeled pentoses in man. J. Clin. Invest. 38: 407-413 (1959) https://doi.org/10.1172/JCI103815
  17. Yoshihiro, N. and Katsuyuki, M. Diet food, food for diabetes and method for producing the foods. Japan patent publication number 2002-136-272 (2000)
  18. Colquhoum, I.J., Ralet, M.-C., Thibault, J.-F., Faulds, C.B. and Williamson, G. Structure identification of feruloylated oligosaccharides from sugar-beet pulp by NMR spectroscopy. Carbohydr. Res, 263: 243-256 (1994) https://doi.org/10.1016/0008-6215(94)00176-6
  19. Pigman, W. The Carbohydrates, Chemistry, Biochemistry, Physiology. Academic Press, New York, USA (1957)
  20. Ayano, Y. Dietary fiber in cereals: Nutritional and physiological aspect. J. Jpn. Soc. Nutr. Food Sci. 45: 209-219 (1992) https://doi.org/10.4327/jsnfs.45.209
  21. Englyst, H.N., Binghan, S.A., Runswick, S.A., Collinson, E. and Cummings, J.H. Dietary fibre (non-starchpolysaccharides) in fruit, vegetables and nuts. J. Human Nutr. Diet. 1: 247-286 (1988) 2: 253-271 (1989) https://doi.org/10.1111/j.1365-277X.1989.tb00028.x
  22. Englyst, H.N. and Kingman, S.M. Dietary Fiber. Plenum Publishing Corporation, New York, USA (1990)
  23. Saulnier, L., Marot, C., Chanliaud, E. and Thibault, J.-F. Cell wall polysaccharide interactions in maize bran. Carbohydr. Polym. 26: 279-287 (1995) https://doi.org/10.1016/0144-8617(95)00020-8
  24. Cramer, F.B. Improved isolation of L-arabinose from mesquite gum. J. Franklin Inst. 256: 93-94 (1953) https://doi.org/10.1016/0016-0032(53)90912-0
  25. Osborn, D. and Chen, LF. Corn hull hydrolysis using glucoamylase and sulfuric acid. Starch 36: 393-395 (1984) https://doi.org/10.1002/star.19840361106
  26. Shibanuma, K, Takamine, K, Maeda, S., Osaki, S., Abe, J. and Hizukuri, S. Partial acid hydrolysis of corn fiber for the production of L-arabinose. J. Appl. Glycosci. 46: 249-256 (1999) https://doi.org/10.5458/jag.46.249
  27. Hizukuri, S., Abe, J., Ohsaki, S. and Suetake, S. Process for producing L-arabinose by acid hydrolysis method, PCT-internationalPatent application (1999)
  28. Park, N.H., Yoshida, S., Takakashi, A., Kawabata, Y., Sun, H.J. and Kusakabe, I. A new method for the preparation of crystalline L-arabinose from arabinoxylan by enzymatic hydrolysis and selective fermentation with yeast. Biotechnol. Lett. 23: 411-416 (2001) https://doi.org/10.1023/A:1005681032082
  29. Kusakabe, I., Yasui, T. and Kobayashi, T. Some properties of arabinan degrading enzymes produced by microorganism and enzymatic preparation of arabinose from sugar beet pulp. Nippon Nogeikagaku Kaishi. 49: 295-305 (1975) https://doi.org/10.1271/nogeikagaku1924.49.295
  30. Kormelink, F.J.M., Searle-Van Leewen, M.J.F., Wood, T.M. and Vorgen, A.G.J. Purification and characterization of a (1,4)-$\beta$-Darabinoxylan arabinohydrolase from Aspergillus awamori. Appl. Microbiol. Biotechnol. 35: 753-758 (1991)
  31. Filho, E.X.F., PuIs, J. and Coughlan, M.P. Purification and characterization of two arabinofuranosidase from solid-state cultures of the fungus Penicillium capsulatum. Appl. Environ. Microbiol. 62: 168-173 (1996)
  32. loannes, P.D., Peirano, A., Steiner, J. and Eyzaguirre, J. An $\alpha$-L-arabinofuranosidase from Butyrivibrio fibrisolvens GS113. Appl. Environ. Microbiol. 58: 1082-1088 (2000)
  33. Kaneko, S., Arimoto, M., Ohba, M. Kobayashi, H., Ishii, T. and Kusakabe, I. Purification and substrate specificities of two $\alpha$-L-arabinofuranosidases from Aspergillus awamori IFO 4033. Appl. Environ. Microbiol. 64: 4021-4027 (1998)
  34. Luonteri, E., Beldman, G. and Tenkanen, M. Substrate specificities of Aspergillus terreus $\alpha$-L-arabinofuranosidases. Carbohydr. Polym. 37: 131-141 (1998) https://doi.org/10.1016/S0144-8617(98)00052-6
  35. Kimura, I., Yoshioka, N., Kimura, Y. and Tajima, S. Cloning, sequencing an diexpression of an $\alpha$-L-arabinofuranosidase from Aspergillus sojae. J. Biosci. Bioeng. 89: 262-266 (2000) https://doi.org/10.1016/S1389-1723(00)88830-1
  36. Tajana, E., Fiechter, A. and Zimmermann, W. Purification and characterization of two $\alpha$-L-arabinofuranosidases from Streptomyces diastaticus. Appl. Environ. Microbiol. 58: 1447-1450 (1992)
  37. Matsuo, N., Kaneko, S., Kuno, S., Kobayashi, H. and Kusakabe, I. Purification, characterization and gene cloning of two $\alpha$-L-arabinofuranosidases from Streptomyces chartreusis GS901. Biochem.J. 346: 9-15 (2000) https://doi.org/10.1042/0264-6021:3460009
  38. Komae, K.S. and Sato. M. An $\alpha$-L-arabinofuranosidase from Streptomyces purpurascens IFO 3389. Agric. BioI. Chem. 46: 1899-1905 (1982) https://doi.org/10.1271/bbb1961.46.1899
  39. Manin, C., Shareek, F., Morosoli, R. and Kluepfel, D. Purification and characterization of an $\alpha$-L-arabinofuranosidase from Streptomyces lividans 66 and DNA sequence of the gene(abfA). Biochem. J. 302: 443-449 (1994) https://doi.org/10.1042/bj3020443
  40. Hespell, R.B. and O'Bryan, P.J. Purification and charaterization of an $\alpha$-L-arabinofuranosidase from Butyrivibrio fibrisolvens GS113. Appl. Environ. Microbiol. 58: 1082-1088 (1992)
  41. Kaneko, S., Sano, M. and Kusakabe, I. Purification and some properties of $\alpha$-L-arabinofuranosidase from Bacillus subtilis 3-6. Appl. Environ. Microbiol. 60: 3425-3428 (1994)
  42. Gilead, S. and Shoham, Y. Purification and characterization of $\alpha$-L-arabinofuranosidase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 61: 170-174 (1995)
  43. Schwartz, W.H., Bronnenmeir, K., Krause, B., Lottspeich, F. and Staudenbauer, W.L. Debranching of arabinoxylan: properties of the thermoactive recombinant $\alpha$-L-arabinofuranosidase from Clostridium stercorarium (ArfB). Appl. Microbiol. Biotechnol. 43: 856-860 (1995) https://doi.org/10.1007/BF02431919
  44. Uesaka, E., Sato, M., Raiju, M. and Kaji, A $\alpha$-L-Arabinofuranosidase from Rhodotorula flava. J. Bacteriol. 133: 1073-1077 (1978)
  45. Kim, K.S., Lilburn, T.G., Renner, M.J. and Breznak, J.A. arf I and arf II, two genes encoding $\alpha$-L-arabinofuranosidases on Cytophaga xylanitica. Appl. Environ. Microbiol. 64: 1919-1923 (1998)
  46. Hata, K., Tanaka, M., Tsumuraya, Y. and Hashimot, Y. $\alpha$-L-Arabinofuranosidase from radish (Raphanus sativus L.) seeds. Plant Physiol. 100: 388-396 (1992) https://doi.org/10.1104/pp.100.1.388
  47. Beldman, G., Schols, H.A., Pitson, S.M., Searl-van Leeuwen, M.J.F. and Voragen, A.G.J. Arabinans and arabinan degrading enzymes. Adv, Macromol. Carbohydr. Res. 1: 1-64 (1997) https://doi.org/10.1016/S1874-5261(97)80003-0
  48. Kormelink, F.J.M. and Voragen, A.G.J. Degradation of different [(glucurono)arabino] xylans by a combination of purified xylandegrading enzymes. Appl. Microbiol. Biotechnol. 38: 688-695 (1993)
  49. Weinstein, L. and Albersheim, P. Structure of plant cell walls. IX. Purification and partial characterization of a wall degrading endoarabinase and an arabinosidase from Bacillus subtilis. Plant Physiol. 63: 425-432 (1979) https://doi.org/10.1104/pp.63.3.425
  50. Saha, B.C. and Bothast, R.J. Effect of carbon source on production of $\alpha$-L-arabinofuranosidase by Aureobasidium pullulans. Cur. Microbiol. 37: 337-340 (1998) https://doi.org/10.1007/s002849900388
  51. Ng, T. and Kenealy, W. Industrial applications of thermostable enzymes, pp. 197-215. In: Thermophiles: General, Molecular and Applied Microbiology. Brock, T.D. (ed.). Wiley-Interscience, New York, USA (1986)
  52. Yankov, D., Dobrea, E., Beschkov, V. and Emanuilova, E. Study of optimum conditions and kinetics of starch hydrolysis by means of thermostable $\alpha$-amylase. Enz. Micro. Tech. 8: 665-667 (1986) https://doi.org/10.1016/0141-0229(86)90062-1
  53. Sunna, A. and Antranikian, G. Growth and production of xylanolytic enzymes by the extreme thermophilic anaerobic bacterium Thermotoga thermarum. Appl. Microbiol. Biotechnol. 45: 671-676 (1996) https://doi.org/10.1007/s002530050746
  54. Debeche, T., Cummings, N., Connerton, I. Debeire, P. and O'Donohue, M.J. Genetic and biochemical characterization of a highly thermostable $\alpha$-L-arabinofuranosidase from Thermobacillus xylanilyticus. Appl. Env. Microb. 66: 1734-1736 (2000) https://doi.org/10.1128/AEM.66.4.1734-1736.2000
  55. Yoon, H.-S., Han, N.S. and Kim, C.H. Molecular cloning and characterization of arabinofuranosidase gene from hyperthermophilic microorganism Thermotoga maritima, p. 96. In: The Proceedings of the Korean Society of Agricultural Chemistry and Biotechnology 2002 Annual Meeting. KSACB, Seoul, Korea (2002)
  56. Keum, I. Yoon, J.-H., Kim, T.-J., Yoon, H.-S., Lee, W.-J. and Han, N.S. Characterization of recombinant $\alpha$-L-arabinofuranosidase from the hyperthermophile Thermotoga maritima, p. 587. In: Proceedings of the Korean Society for Biotechnology and Bioengineering 2003 Annual Meeting, KSBB, Seoul, Korea (2003)