Optimization of Extraction Conditions from Hericium erinaceus by Response Surface Methodology

반응표면분석법에 의한 노루궁뎅이 버섯 에탄올 추출조건의 최적화

  • Published : 2003.10.01

Abstract

Response surface methodology (RSM) was used to monitor the characteristics of ethanol extracts from Hericium erinaceus. A central composite design was applied to investigate the effects of independent variables, ethanol concentration $(X_1)$, and sample ratio $(X_2)$ on dependent variables, soluble solid $(Y_1)$, total phenols $(Y_2)$, crude protein $(Y_3)$, electron donating ability $(Y_4)$, and browning color $(Y_5)$ of the extracts. As the sample ratio increased, the soluble solid content increased. Ethanol concentration played a minor role. Total phenols and crude protein increased with sample ratio. Sample ratio had a greater effect than alcohol concentration in the extraction of soluble solid, total phenols, crude protein, and browning color, with an exception of electron donating ability. The optimum ranges at 2 hr extraction was $3.9{\sim}5.0\;g/l00\;mL$ in sample ratio and $36{\sim}52%$ in ethanol concentration. Predicted values at the optimized conditions were acceptable when compared to experimental values.

노루궁뎅이 버섯의 기능성 식품소재 개발과 가능성을 검토하기 위하여, 반응표면분석에 의해 추출조건의 최적화 및 추출특성을 모니터링하였다. 중심합성계획에 따라 에탄올 농도$(X_1)$, 시료의 용매비$(X_2)$를 요인변수로 하고 추출물의 특성 즉, 가용성 고형분$(Y_1)$, 총페놀 함량$(Y_2)$, 조단백$(Y_3)$, 전자공여능$(Y_4)$, 갈색도$(Y_5)$를 종속변수로 하여 추출을 실시하였다. 추출물의 가용성 고형분은 에탄올 농도에 의해 거의 영향을 받지 않는 것으로 나타났으며 시료의 용매비가 증가할수록 증가하는 경향을 나타내었다. 에탄올 농도가 낮을수록, 시료의 용매비가 높을수록 페놀성 성분의 함량이 증가하는 반응표면을 나타내었으며, 조단백 함량의 경우 에탄올 농도가 감소할수록 증가하였다가 일정시점 이후로 약간의 감소하는 경향을 나타내었으며, 시료의 용매비가 증가할수록 증가하는 경향을 나타내었다. 추출물의 전자공여작용을 제외하고는 에탄올 농도보다는 시료의 용매비에 더 큰 영향을 미치는 것으로 나타났다. 이들 추출물의 특성을 모두 만족시키는 최적 추출조건은 에탄올 농도 $36{\sim}52%$. 시료의 용매비 $3.9{\sim}5.0\;g/100\;mL$로 나타났으며 예측된 최적 추출조건의 임의의 점에서 실험한 결과, 각 반응변수들의 예측값과 실제값이 유사하였다.

Keywords

References

  1. Ota, S. Shiitake (Lentinus edodes). New Food Ind. 26: 49-54 (1984)
  2. Yearul, K.A. and Shuichi, K. Dietary mushroom reduce blood pressure in spontaneously hypertensive rat. J. Nutr. Sci. Vitaminol. 35: 91 (1989) https://doi.org/10.3177/jnsv.35.91
  3. Yanmaguchi, M. and Yearul, K.A. Effect of shitake and maitake mushroom on blood pressure and plasma lipids of spontaneouly hypertensive rats. J. Nutr. Sci. Vitaminol. 33: 341-345 (1987) https://doi.org/10.3177/jnsv.33.341
  4. Ebihara, K. and Minamishima, Y. Protective effect of biological response modifiers on murine cytomegalovirus infection. J. Virology 51: 117 (1984)
  5. Troll, W., Frenkel, K. and Teebor, G. Free oxygen radicals: necessary contributors to tumor promotion and cocarcinogenesis. Princess Takamatsu Symp. 14: 207-218 (1993)
  6. Sato, Y., Hotta, N., Sakamoto, N., Matsuoka, S., Ohishi, N. and Yagi, K. Lipid peroxide level in plasma of diabetic patients. Biochem. Med. 21: 104-107 (1979) https://doi.org/10.1016/0006-2944(79)90061-9
  7. Wolff, S.P. and Dean, R.T. Glucose autoxidation and protein modification. The potential role of autoxidative glycosylation in diabetes. Biochem. J. 245: 243-250 (1987) https://doi.org/10.1042/bj2450243
  8. Salim, A.S. Oxygen-derived free radicals and the prevention of duodenal ulcer relapse. Am. J. Med. Sci. 300: 1-8 (1990) https://doi.org/10.1097/00000441-199007000-00001
  9. Chang, H.Y. and Roh, M.G. Physiological characteristics of Hericium erinaceus in sawdust media. Korean J. Mycol. 27: 252-255 (1999)
  10. Ahn, D.K. Medicinal fungi in Korea. Korean J. Mycol. 20: 154 (1992)
  11. Mizuno, T., Wasa, T., Ito, H., Suzuki, C. and Ukai, N. Antitumoractive polysaccharides isolated from the fruiting body of Hericium erinaceum; an edible and medicinal mushroom called yamabushitake or houtou. Biosci. Biotech. Biochem., 56: 347-348 (1992) https://doi.org/10.1271/bbb.56.347
  12. Park, S.H., Kim, O.M. and Lee, K.R. Antimutagenic and quinone reductase inducing activities of Hericium erinaceus extracts. J. Korean Soc. Food Sci. Nutr. 30: 1287-1292 (2001)
  13. Park, S.H., Kim, J.Y., Chang, J.S., Oh, E.J., Kim, O.M. and Bae, J.T. Protective effect of Hericium erinaceus extracts on hepatic injury induced by benzo(a)pyrene in mice. J. Korean Soc. Food Sci. Nutr. 30: 928-932 (2001)
  14. Kang, K.C., Park, J.H., Baek, S.B., Jhin, H.S. and Rhee, K.S. Optimization beverage preparation from Schizandra chinensis bailon by response surface methodology Korean J. Food Sci. Technol. 24: 74-81 (1992)
  15. SAS. SAS/ STAT. User's Guide Version 6, 4th ed., Ch. 37, Vol. 2, p. 1457. SAS Institute Inc., Cary, NC, USA (1995)
  16. Amerine, M.A and Ough, C.S. Methods for Analysis of Musts and Wine, pp. 177. John Wiley & Sons Co., New York, USA (1980)
  17. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. Protein measurement with the folin phenol reagent. J. BioI. Chem. 193: 265-269 (1951)
  18. Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1202 (1958) https://doi.org/10.1038/1811199a0
  19. Park, M.H., Kim, K.C. and Kim, J.S. Changes in the physicochemical properties of ginseng by roasting. Korean J. Ginseng Sci. 17: 228-231 (1993)
  20. Oh, S.L., Kim, S.S., Min, B.Y. and Chung, D.H. Composition of free sugars, free amino acids, non-volatile organic acids and tannins in the extracts of L. chinensis m., A. acutiloba K., S. chinensis B. and A. sessiliflorum S. Korean J. Food Sci. TechnoI. 22: 76-81 (1990)
  21. Sung, H.S. Styudies on the effect of extracting conditions on the physicochemical properties of Korean ginseng extract. Ph.D. dissertation, Hanyang Univ., Seoul, Korea (1983)
  22. Kim, N.M., Ko, S.R., Choi, K.J. and Kim, W.J. Effect of some extraction conditions on efficiency composition in cinnamon extracts. J. Korean Agric. Chem. Soc. 36: 17-22 (1993)
  23. Kang, Y.H., Park, Y.K. and Lee, G.D. The nitrite scavening and electron donating ability of phenolic compounds. Korean J. Food Sci. Techno1.28: 232-239 (1996)
  24. Kim, N.M., Yang, J.W. and Kim, W.J. Effect of ethanol concentration on index components and physicochemical characteristics of cinnamon extracts. Korean J. Food Sci. TechnoI. 15: 282-287 (1993)