Purification and Characterization of $L-galactono-{\gamma}-lactone$ Oxidase in Pichia sp. Isolated from Kimchi

김치유래 Pichia속 효모가 생산하는 $L-galactono-{\gamma}-lactone\;oxidase$의 분리 정제 및 특성

  • Oh, Ji-Young (Doosan Corporation Research and Development Center) ;
  • Han, Young-Sook (Department of Food and Nutrition, Sungshin Women's University)
  • Published : 2003.12.01

Abstract

The purification and characteristics of the biosynthesis enzyme of vitamin C from microorganisms related with kimchi fermentation were investigated to define vitamin C biosynthetic pathways in yeast. A yeast strain (Pichia onychis 16-4) which synthesizes vitamin C with galacturonic acid as substrate at high rate was isolated from kimchi. The enzyme $L-galactono-{\gamma}-lactone$ oxidase isolated from the yeast was purified and characterized. The specific activity of the crude enzyme was 7.26 unit/mg protein, which increased to 4,698 unit/mg protein with a chromatography of Sephacryl S-200HR; indicating a 647.1-fold level of purification. The molecular weights of the dissociated enzymes were estimated to be 31,000, 39,000, and 50,000 KD. Among the substrates tested, $L-galactono-{\gamma}-lactone$ was the most effective. The enzyme showed optimum activity ah pH 7.8 and 35c. The purified enzyme uses $O_2$ as the electron acceptor for oxidation of $L-galactono-{\gamma}-lactone$.

본 연구는 김치의 발효 말기에 비타민 C의 증가 현상을 조사하였으며, 이는 김치 발효 후기에 생육하는 효모에 의한 현상으로 미생물인 효모에서 비타민 C 생합성 경로를 밝히기 위해 수행된 것으로 그 결과는 다음과 같았다. 김치의 숙성에 따른 pH와 총 산함량의 변화는 김치가 숙성되면서 pH는 담금 초기 5.29에서 숙성 33일에 pH 3.50으로 감소되었고, 총 산함량은 담금 초기 0.24%에서 숙성 33일에 2.48%로 증가되었으며, 비타민 C의 함량을 측정한 결과 발효 3일째까지 점점 상승하다 감소되었으나, 발효 15일째는 19.58mg%로 초기 함량보다 다소 높게 측정되었다. 김치의 PG 활성은 김치 숙성초기에는 낮았으나, 김치 숙성 10일 이후부터 증가되어 발효 13일에는 15.4unit/mg protein으로 PG활성이 증가하는 경향을 보였다. 김치에서 분리된 효모 중 배양액의 비타민C의 함량이 높게 측정된 효모를 선별하였으며, 동정결과 Pichia onychis, Pichia rabaulenis, Pichia jadinii, Candida humilis로 각각 동정되었다. 분리, 동정된 효모 중 비타민 C생성량이 가장 높았던 Pichia onychis 16-4 균주로부터 비타민 C 합성 조효소액을 추출하였으며, specific activity는 7.26unit/mg protein로 나타났다. 최종 정제 시 효소활성은 4,698unit/mg protein으로 나타나 처음보다 647.10배로 농축되었음을 알 수 있었다. 정제된 효소액의 분자량은 31,000, 39,000, 50,000 KD으로 3개의 subunits를 갖는 것이 확인되었다. 정제된 효소는 $L-galactono-{\gamma}-lactone$를 최적 기질로 사용하였으며 $35^{\circ}C$에서 pH 7.8일때 최적활성을 나타내었다. 본 연구에서 정제된 효소는 산소를 전자수용체로 하는 $L-galactono-{\gamma}-lactone$ oxidase임을 알 수 있었다.

Keywords

References

  1. Ostergaard, J., Persiau, G., Davey, M.W., Bauw, G. and Van Montagu, M. Isolation of cDNA coding for L-galactono-y-Iactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants: purification, characterization, cDNA cloning, and expression in yeast. J. BioI. Chern. 272: 30009-30016 (1997) https://doi.org/10.1074/jbc.272.48.30009
  2. Wheeler, G.L., Jones, M.A. and Smimoff, N. The biosynthesis pathway of vitamin C in higher plants. Nature 393: 365-369 (1998) https://doi.org/10.1038/30728
  3. Mapson, L.W. and Breslow, E. Biological synthesis of L-ascorbic acid: L-galactono-y-lactone dehydrogenase. J. Biochem. 68: 395-406 (1958) https://doi.org/10.1042/bj0680395
  4. Oba, K, Ishikawa, S., Nishikawa, M., Mizuno, H. and Yamamoto, T Purification and properties of L-galactono-y-Iactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots. J. Biochem. 117: 120-124 (1995) https://doi.org/10.1093/oxfordjournals.jbchem.a124697
  5. Sakano, K and Asahi, T Biochemical studies on biogenesis of mitochondria in wounded sweet potato root tissue I. Time course analysis of increase in mitochondria enzyme. Plant Cell Physiol. 12: 417-426 (1971)
  6. Bums, J.J. Missing step in man, monkey and gunia pig required for the biosynthesis of L-ascorbic acid. Nature 180: 533-538 (1957) https://doi.org/10.1038/180533a0
  7. Chaudhuri, C.R. and Chatterjee, I.B. L-Ascorbic acid synthesis in birds: The phylogentic trend. Science 164: 435-436 (1969) https://doi.org/10.1126/science.164.3878.435
  8. Sugisawa, T., Ojima, S., Matzinger, P.K. and Hoshino, T. Isolation and characterization of a new vitamin C producing enzyme (Lgulono- y-lactone dehydrogenase) of bacterial origin. Biosci. Biotechnol. Biochem. 59: 190-196 (1995) https://doi.org/10.1271/bbb.59.190
  9. Takahashi, T., Murakawa, S. and Masataka, B. Ascorbic acid analogs as indirect products of Serratia marcescens. Agric. BioI. Chem. 40:1255-1256 (1976) https://doi.org/10.1271/bbb1961.40.1255
  10. Nishikimi, M., Noguchi, E. and Yagi, K. Occurrence in yeast L-galactonolactone oxidase which is similar to a key enzyme for ascorbic acid biosynthesis in animals, L-gulonolactone oxidase. Arch. Biochem. Biophys. 191: 479-486 (1978) https://doi.org/10.1016/0003-9861(78)90386-7
  11. Nishikimi, M., Noguchi, E. and Yagi, K Redox properties of Lgalactonolactone oxidase purified from baker's yeast. Biochem. Int. 1: 155-161 (1980)
  12. Bleeg, H. and Christensen, F. Biosynthesis of ascorbate in yeast. Eur. J. Biochem. 127:391-396 (1982) https://doi.org/10.1111/j.1432-1033.1982.tb06884.x
  13. Alexander, A.G., David, A.B. and Alan, B.B. Ascorbate free radical reductase mRNA levels are induced by wounding. Plant Physiol. 108: 411-418 (1995) https://doi.org/10.1104/pp.108.1.411
  14. Kiuchi, K, Nishilimi, M. and Yagi, K. Purification and characterization of L-gulonolactone oxidase from chicken kidney microsomes. Biochemistry 21: 5076 -5082 (1982) https://doi.org/10.1021/bi00263a035
  15. Nishikimi, M., Tolbert, B.M. and Udenfriend, S. Purification and characterization of L-gulono-y-Iactone oxidase from rat and goat liver. Arch. Biochem. Biophys. 175: 427-435 (1976) https://doi.org/10.1016/0003-9861(76)90530-0
  16. Smirnoff, N. The fuction and metabolism of ascorbic acid in plants. Ann. Bot. 78: 661-669 (1996) https://doi.org/10.1006/anbo.1996.0175
  17. Mapson, L.W. and Isherwood, F.A. Biological synthesis of L-ascorbic acid: the conversion of derivatives of D-galacturonic acid to L-ascorbic acid in plant extracts. J. Biochem. 64: 13-22 (1956)
  18. Isherwood, F.A. and Mapson, L.W. Ascorbic acid metabolism in plants. Part II. Biosynthesis. Annu. Rev. Plant Physiol. 13: 329-350 (1962) https://doi.org/10.1146/annurev.pp.13.060162.001553
  19. Huh, W.K., Kim, S.T., Yang, K.S., Seok, Y.J., Hah, Y.C. and Kang, S.O. Characterization of D-arabinono-l,4-lactone oxidase from Candida albicans ATCC 10231. Eur. J. Biochem. 225: 1073-1079 (1994) https://doi.org/10.1111/j.1432-1033.1994.1073b.x
  20. Murakawa, S., Sano, S., Yanashita, H. and Takahashi, T. Biosynthesis of D-erythroascorbic acid by Candida. Agric. Biol. Chem. 41: 1799-1800 (1977) https://doi.org/10.1271/bbb1961.41.1799
  21. Kenney, W.C., Edmonson, D.E., Singer, T.P., Nishikimi, M., Noguchi, E. and Yagi, K. Identification of the covalently bound flavin of L-galatonolactone oxidase yeast. FEBS Lett. 97: 40-42 (1979) https://doi.org/10.1016/0014-5793(79)80047-2
  22. Lee, J.W. The study of factor on biosynthesis of vitamin C during kimchi fermentation. M.S. thesis, Seoul National Univ., Seoul, Korea (1973)
  23. Lee, T.Y. and Lee, J.W. Effects of galacturonic acid added and vitamin C contents of kimchi during fermentation. Agricultural Chem. Biotechnol. 24: 139-144 (1981)
  24. Postlmary, H.L., Luh, B.S. and Leonard, S.J. Characterization of pectic changes in freestone and clingstone peaches during ripening and processing. Food Technol. 10: 618-623 (1966)
  25. Ju, H.K. and Cho, K.S. The Analysis of Food. Hack-Moon Press, Seoul, Korea (1995)
  26. Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-431 (1959) https://doi.org/10.1021/ac60147a030
  27. Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  28. Bio-Rad Laboratories. Bio-Rad Protein Assay. Bio-Rad Corp., Hercules, USA (1997)
  29. Difco Laboratories. Difco Manual, 10th ed. Becton Dickinson Co., Sparks, USA (1984)
  30. Hancock, R.D., Galpin, J.R. and Viola, R. Biosynthesis of Lascorbic acid (vitamin C) by Saccharomyces cerevisiae. FEMS Micobiol. Lett. 186: 245-250 (2000)
  31. Bollag, D.M. and Edelstein, S.J. Protein Methods. 2nd ed., pp. 95-127. Wiley-Liss, Inc., New York, USA (1991)
  32. Promega Laboratories. Silver Staining Protocol. Promega Co., Madison, USA (1999)
  33. Sigma Laboratories. Glucose(GO) assay Kit GAGO-20. SigmaAldrich Corp., St. Louis, USA (1997)
  34. Choe, G.J. The study of yeast isolated from kimchi. Korean J. Appl. Microb. Biotechnol. 16: 1-10 (1970)
  35. Lee, H.S., Ko, Y.T. and Lim, S.J. Effects of protein sources on kimchi fermentation and on the stability ascorbic acid. Korean J. Nutr. 17: 101-107 (1984)
  36. Yook, C., Chang, K., Park, K.H. and Ahn, S.Y. Pre-heating treatement for prevention of tissue softening of radish root kimchi. Korean J. Food Sci. Technol. 17: 447-453 (1985)
  37. Park H.O., Kim, Y.K and Yoon, S. Study of enzyme system during kimchi fermentation. Korean Soc. Food Cooking Sci. 7: 1-7 (1991)