Antioxidative Effects of Korean Bamboo Trees, Wang-dae, Som-dae, Maengjong-juk, Jolit-dae and O-juk

한국산 왕대, 솜대, 맹종죽, 조릿대 및 오죽의 항산화 효과

  • Lee, Min-Ja (Department of Food and Life Science, Inje University) ;
  • Moon, Gap-Soon (Biohealth Products Research Center supported by MOST & KOSEF, Food Science Institute and School of Food and Life Science, Inju University)
  • 이민자 (인제대학교 식품생명과학과) ;
  • 문갑순 (인제대학교 바이오헬스 소재연구센터, 식품과학연구소)
  • Published : 2003.12.01

Abstract

Bamboo trees have been used for a long time as folk remedies for treatment of hypertension and stroke symptoms in Oriental regions. These pharmaceutical effects of bamboos look like to be related to its antioxidant capacity and phytochemicals in bamboos. To evaluate the antioxidative effects of bamboo trees, five kinds of bamboo varieties dominant in Korean peninsular were chosen and determined its total antioxidaive activities, free radical scavenging activities and nitrite scavenging activities by TEAC (Trolox Equivalent Antioxidant Capacity) assay, DPPH and Griess reagent assay using in vitro system, respectively. To evaluate the correlation between antioxidative activities and Maillard reaction during hot water extraction, contents of reducing sugar and total nitrogen and brown color intensity at 420 nm were determined. When total antioxidative activities, free radical scavenging activities and nitrite scavenging activities of five kinds of bamboo trees were compared, wang-dae (Phyllostachys bambusoides S. et Z.) showed the strongest effect among samples, although all kinds of extracts showed relatively strong effects against oxidation. The bamboo culms extract showed stronger antioxidative effects than that of bamboo leaves. In each fraction obtained from 70% ethanol extract, antioxidative effect were increased in order of dichloromethane>ethyl acetate>butanol>water>hexane fraction. In reducing sugar analysis of extracts, reducing sugar contents of water extracts were higher than that of 70% ethanol extracts and wang-dae water extract showed the highest level which was 708.92 mg/g. Total nitrogen contents of the extracts were $1.785{\sim}2.605\;mg%$ and contents in water extracts were lower than that in 70% ethanol extracts. Brown color intensity at 420 nm showed similar tendency with results in reducing sugar contents.

국내산 대나무 다섯 종의 줄기와 잎을 열수 및 70% 에탄올로 추출하여 이들의 항산화 효과를 TEAC법을 이용하여 측정한 결과 다섯 종의 대나무 모두 높은 항산화 효과를 보였으나 왕대>조릿대>솜대>맹종죽>오죽의 순으로 TE 값이 높게 나타났다. 줄기와 잎을 비교하였을 때 잎 보다 줄기의 항산화 효과가 높았으며 열수 추출물에서의 항산화능이 70% 에탄올 추출물에서 보다 큰 것으로 나타났다. 한편, 왕대 70% 에탄올 추출물을 용매 극성별로 분획하여 항산화 효과를 측정한 결과 디클로로메탄>에틸아세테이트>부탄올>물>핵산의 순으로 TE 값이 높았는데 특히, 디클로로메탄층의 TE 값은 1.713으로서 다른 식물성 추출물 보다 월등히 높은 것으로 나타났다. DPPH를 이용하여 유리기 소거 효과를 측정한 결과와 nitrite 소거 활성을 측정한 결과도 항산화 효과와 같은 경향을 나타내어서 줄기가 잎보다 높은 소거 활성을 나타내었으며 왕대 용매별 분획물의 활성은 디클로로메탄층에서 가장 높았다. 대나무 열수 추출물의 높은 항산화 효과, 유리기소거 효과 및 nitrite 소거 효과는 메일라드 반응 생성물과 관련이 있을 것으로 여겨져 환원당 함량을 측정한 결과 70% 에탄올 추출물보다는 열수 추출물에서 높게 나타났으며 특히, 왕대 열수 추출물의 환원당 함량이 가장 높았고 조릿대>맹종죽>오죽>솜대의 순이었으며 420nm에서의 갈색도도 이와 같은 경향을 나타내었으며 높은 상관관계를 나타내었다. 따라서, 당 함량이 높은 식물 추출물의 항산화 효과, 유리기 및 nitrite 소거 활성 검정에는 메일라드 반응에 의한 효과가 부가되는 것으로 나타났다.cetone 추출물 200ppm에서 98.19%의 강한 저해효과를 나타내었다.9mg$의 함량으로 S3(279.29mg), S1(188.23mg), S2(180.52mg), S6(179,60mg)의 순으로서 S3(한국하), S1(한국상), S2(한국중)의 순으로 높게 나타났고 한국 말차가 Ca 함량이 더 높았다. Mg의 경우는 시료 100g당 $346.63{\sim}590.03mg$로 S3(590.03mg), S4(530.00mg), S2는 346.63 mg으로 매우 낮은 수치를 나타내었다. P의 함량은 S4 (398.47mg), S5(373.90mg), S6(371.55mg), S2(355.40mg), S1(346.66mg), S3(237.38mg)의 순으로서 $237.38{\sim}398.47mg$의 분포를 보여 S4(일본 상), S5(일본 중)의 순서로 높게 나타났다. Na은 $141.78{\sim}231.54mg/100g$로서 S2(231.54mg), S1(292.95mg), S5(191.31mg)로 의 순으로 한국산 말차에 함량이 높았고, K은 $1,357.70{\sim}2,716.12mg/100g$으로 S4(2,716.12mg), S5(2,254.20mg), S6(2,221.45mg), S1(2,148.16mg), S2(1,842.36mg), S3(1,357.70mg)의 순으로 일본산이 훨씬 높은 함량을 나타내었으며, Fe함량은 $17.60{\sim}24.34\;mg/100g$으로서 S6 (24.34mg), S5(21.

Keywords

References

  1. Moini, H., Packer, L. and Saris, N.L. Antioxidant and prooxidant activities of alpha-lipoic acid and dihydrolipoic acid. Toxicol. Appl. Pharmacol. 182: 84-90 (2002) https://doi.org/10.1006/taap.2002.9437
  2. Giles, G.I., Tasker, K.M. and Jacob, C. Hypothesis: the role of reactive sulfur species in oxidative stress. Free Rad. BioI. Med. 31: 1279-1283 (2001) https://doi.org/10.1016/S0891-5849(01)00710-9
  3. Bomzon, A. and Ljubuncic, P. Oxidative stress and vascular smooth muscle cell function in liver disease. Pharmacol. Therape. 89: 295-308 (2001) https://doi.org/10.1016/S0163-7258(01)00129-2
  4. David, A.W. and James, B.M. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Rad. BioI. Med. 25: 434-456 (1998) https://doi.org/10.1016/S0891-5849(98)00092-6
  5. Espey, M.G., Miranda, K.M., Thomas, D.D., Xavier, S., Citrin, D., Vitek, M.P. and David, A.W. A chemical perspective on the interplay between NO, reactive oxygen species, and reactive nitrogen oxide species. Ann. New York Acad. Sci. 962: 195-206 (2002) https://doi.org/10.1111/j.1749-6632.2002.tb04068.x
  6. Andreadis, A.A., Hazen, S.L., Comhair, S.A.A. and Erzurum, S.C. Oxidative and nitrosative events in asthma. Free Rad. BioI. Med. 35: 213-225 (2003) https://doi.org/10.1016/S0891-5849(03)00278-8
  7. Fubini, B. and Hubbard, A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Rad. BioI. Med. 34: 1507-1516 (2003) https://doi.org/10.1016/S0891-5849(03)00149-7
  8. Juan, S., Federico, V.P. and Jose, V. The role of mitochondrial oxidative stress in aging. Free Rad. Biol. Med. 35: 1-8 (2003) https://doi.org/10.1016/S0891-5849(03)00612-9
  9. Lin, M.T. and Beal, M.F. The oxidative damage theory of aging. Clin. Neurosci. Res. 2: 305-315 (2003) https://doi.org/10.1016/S1566-2772(03)00007-0
  10. Rajindar, S.S., Robin, J.M. and William, C.O. Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Rad. BioI. Med. 33: 575-586 (2002) https://doi.org/10.1016/S0891-5849(02)00886-9
  11. Earl, R.S. Importance of individuality in oxidative stress and aging. Free Rad. BioI. Med. 33: 597-604 (2002) https://doi.org/10.1016/S0891-5849(02)00904-8
  12. Lucio, A., Anna, P., Mauro, C., Agnese, S., Pasqualina, C., Gianfranco, D.R. and Maurizio, T. Modulation of ion channels by reactive oxygen and nitrogen species: a pathophysiological role in brain aging? Neurobiol. Aging 23: 819-834 (2002) https://doi.org/10.1016/S0197-4580(02)00069-6
  13. Kim, M.J., Byun, M.W. and Jang, M.S. Physiological and antibacterial activity of bamboo (Sasa coreana Nakai) leaves. J. Korean Soc. Food Sci. Nutr. 25: 135-142 (1996)
  14. Michiko, F. Difference between bamboo shoots and vegetables in thermal disintegration of tissues and polysaccharides fractionated by successive extraction. J. Food Sci. 55: 739-745 (1990) https://doi.org/10.1111/j.1365-2621.1990.tb05219.x
  15. Kim, N.K., Cho, S.H., Lee, S.D., Ryu, J.S. and Shim, K.H. Chemical properties of hot water extracts from bamboos (Phyllostachys sp.). Korean J. Postharvest Sci. Technol. 8: 469-474 (2001)
  16. Kim, N.K., Cho, S.H., Lee, S.D., Ryu, J.S. and Shim, K.H. Functional properties and antimicrobial activity of bamboo (phyllostachys sp.) extracts. Korean J. Postharvest Sci. Technol. 8: 475-480 (2001)
  17. Baek, J.W., Jung, S.H. and Moon, G.S. Antimicrobial activities of ethanol extracts from Korean bamboo culms and leaves. Korean J. Food Sci. Technol. 34: 1073-1078 (2002)
  18. Kim, M.J., Kim, B.K. and Jang, M.S. Effect of bamboo (Pseudosasa japonica Makino) leaves on the quality and sensory characteristics of dongchimi. J. Food Sci. Nutr. 1: 159-167 (1996)
  19. Chung, D.K. and Yu, R.N. Antimicrobial activity of bamboo leaves extract on microorganisms related to kimchi fermentation. Korean J. Food Sci. Technol. 27: 1035-1038 (1995)
  20. Shin, M.K. and Han, S.H. Effects of methanol extracts from bamboo (Pseudosasa japonica Makino) leaves extracts on lipid metabolism in rats fed high fat and high cholesterol diet. Korean J. Die. Culture 17: 30-36 (2002)
  21. Zang, Y., Wu, X.Q. and Yu, Z.Y. Comparison study on total flavonoid content and anti-free radical activity of leaves of bamboo, phyllostachys nigra, and Ginko biloba. China J. Chinese Mat. Medica 27: 254-257 (2002)
  22. Kweon, M.H., Hwang, H.J. and Sung, H.C. Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis). J. Agric. Food Chem. 49: 4646-4655 (2001) https://doi.org/10.1021/jf010514x
  23. Hu, C. Zhang, Y. and Kitts, D.D. Evaluation of antioxidant and prooxidant activities of bamboo (Phyllostachys nigra var.). Henonis leaf extract in vitro. J. Agric. Food Chem. 48: 3170-3176 (2000) https://doi.org/10.1021/jf0001637
  24. Roberta, R.E., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. BioI. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  25. Miller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V. and Milner, A.A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 84: 407-412 (1993) https://doi.org/10.1042/cs0840407
  26. Blois, M.S. Antioxidant determination by the use of stable free radical. Nature 26: 1199-1200 (1958)
  27. Gray, J.I.. and Dugan, L.R. Inhibition of nitrosamine formation in model food systems. J. Food Sci. 40: 981-984 (1975) https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  28. Somogy, M. and Nelson, N. Notes on sugar determination. J. Biol. Chem. 195: 19-23 (1952)
  29. Baker, P.R.W. The micro-kjeldahl determination of nitrogen: An investigation of the effects of added salt and catalysts. Talanta 8: 57-71 (1961) https://doi.org/10.1016/0039-9140(61)80040-4
  30. Lien, E.J., Ren S., Bui, H.H. and Wang, R. Quantitative structureactivity relationship analysis of phenolic antioxidants. Free Rad. BioI. Med.26: 285-294 (1999) https://doi.org/10.1016/S0891-5849(98)00190-7
  31. Maria, G.A., Sonia, P.T., Celestino, S.B. and Julian, C.R.G. Evaluation of the antioxidant properties of fruits. Food Chem. in Press (2003)
  32. Rivero, M.D.P., Magarino, S.P. and Gonzalez, M.L. Role of melanoidins in sweet wines. Anal. Chimica Acta 458: 169-175 (2002) https://doi.org/10.1016/S0003-2670(01)01591-4
  33. Yen, G.C., Lai, H.H. and Chou, H.Y. Nitric oxide-scavenging and antioxidant effects of Uraria crinita root. Food Chem. 74: 471-478 (2001) https://doi.org/10.1016/S0308-8146(01)00165-0
  34. Pietta, P., Simonetti, P., Gardana, C. and Mauri, P. Trolox equivalent antioxidant capacity (TEAC) of Ginkgo biloba favonol and Camellia sinensis catechin metabolites. J. Pharm. Biomed. Anal. 23: 223-226 (2000) https://doi.org/10.1016/S0731-7085(00)00272-7
  35. Yen, G.C., Chang, Y.C. and Su, S.W. Antioxidant activity and active compounds of rice koji fermented with Aspergillus candidus. Food Chem. 83: 49-54 (2003) https://doi.org/10.1016/S0308-8146(03)00035-9
  36. Do, J.R., Kim, S.B., Park, Y.H., Park, Y.B., Choi, J.S. and Kim, D.S. The nitro-scavenging effects by the component of cassiae torae semen. Korean J. Food Sci. Technol. 25: 526-529 (1993)
  37. Lee, G.D., Chand, H.G. and Kim, H.K. Antioxidative and nitritescavenging activities of edible mushrooms. Korean J. Food Sci. Technol. 29: 432-436 (1997)
  38. Brown, J.M and Yamamoto, B.K. Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress. Pharmacol. Therap. 99: 45-53 (2003) https://doi.org/10.1016/S0163-7258(03)00052-4
  39. Brune, B., Zhou, J. and Knethen, A. Nitric oxide, oxidative stress, and apoptosis. Kidney Int.84: S22-S24
  40. Sonia, S., Prashant, S. and Madhu, D. Nitric oxide- and oxygenderived free radical generation from control and lipopolysaccharide- treated rat polymorphonuclear leukocyte. Nitric Oxide 5: 482-493 (2001) https://doi.org/10.1006/niox.2001.0375
  41. Adeghate, E. and Parvez, S. H. Nitric oxide and neuronal and pancreatic beta cell death. Toxicol. 153: 143-156 (2000) https://doi.org/10.1016/S0300-483X(00)00310-3
  42. Rakesh, P.P., Joanne, M., Hassan, S., Roger, C.W., Jo, H., Freeman, B.A. and Victor, M.D. Biological aspects of reactive nitrogen species. Biochim. Biophys. Acta 1411: 385-400 (1999) https://doi.org/10.1016/S0005-2728(99)00028-6
  43. Weenen, H. Reactive intermediates and carbohydrate fragmentation in Maillard chemistry. Food Chem. 62: 393-401 (1998) https://doi.org/10.1016/S0308-8146(98)00074-0
  44. Hofmann, T., Bors, W. and Stettmaier, K. Studies on radical inter mediates in the early stage of the nonenzymatic browning reaction of carbohydrates and amino acids. J. Agric. Food Chem. 47: 379-390 (1999) https://doi.org/10.1021/jf980626x
  45. Kirigaya, N., Kato, H. and Fugimaki, M. Studies on antioxidant activity of non-enzymatic browning reaction products, Reaction of color intensity and reductones with antioxidant activity of browning reaction products. Agric. BioI. Chem. 32: 287-293 (1968) https://doi.org/10.1271/bbb1961.32.287
  46. Borrelli, R.C., Mennella, C., Barba, F., Russo, M., Russo, G.L., Krome, K.H., Erbersdobler, F., Faist, V. and Fogliano, V. Characterization of bakery products. Food Chem. Toxicol. 41: 1367-1374 (2003) https://doi.org/10.1016/S0278-6915(03)00140-6
  47. Francisco, J.M. and Salvio, J.P. Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chem. 72: 119-125 (2001) https://doi.org/10.1016/S0308-8146(00)00239-9
  48. Jing, H.. and Kitts, D.D. Chemical and biochemical properties of casein-sugar Maillard reaction products. Food Chem. Toxicol. 40: 1007-1015 (2002) https://doi.org/10.1016/S0278-6915(02)00070-4