DOI QR코드

DOI QR Code

Theoretical Investigation of the Triphosphate Forms of Azidothymidine and Thymidine

  • Arissawa, Marcia (Departamento de Quimica, Pontificia Universidade Catolica do Rio de Janeiro-Rua Marques de Sao Vicente) ;
  • Felcman, Judith (Departamento de Quimica, Pontificia Universidade Catolica do Rio de Janeiro-Rua Marques de Sao Vicente) ;
  • Herrera, Juan Omar Machucca (Departamento de Quimica Inorganica, Universidade Federal do Estado do Rio de Janeiro-Ilha do Fundao)
  • Received : 2002.02.21
  • Accepted : 2002.04.16
  • Published : 2003.05.31

Abstract

In this paper we investigate (using AM1 semi-empirical as well as HF methods at the STO-3G, 3-21G, 6-31G, 6-$31G^*$ and 6-31+$G^{**}$ level) the conformations, geometrical parameters, Mulliken charges, and solvation effects of the triphosphate form of AZT (AZTTP), as well as the thymidine nucleotide (dTTP) structure. Our calculated geometrical parameters and Mulliken charges, with and without solvation effects, are correlated with recent experimental results.

Keywords

References

  1. Balzarini, J., Pauwels, R., Herdewijn, P., De Clerq, E., Cooney. D. A., Kang G. J., Dalal, M., Jonhs D. G. and Broder, S. (1986) Potent and selective anti-HTLV-III/LAV activity of 2, 3-dideoxycytidine. Biochem. Biophys. Res. Commun. 140. 735-742. https://doi.org/10.1016/0006-291X(86)90793-X
  2. Chu C. K., Schinazi R. F., Ahn M. K., Ullas, G. V. and Gu, Z. P. (1989) Structure Activity relationships of pyrimidine nucleosides as antiviral agents for Human Immunodeficiency Virus Type 1 in peripheral blood mononuclear cells. J. Med. Chem. 32. 612-617. https://doi.org/10.1021/jm00123a018
  3. Dewar, M. J. S. (1992) The Semiempirical Approach to Chemistry. Int. J. Quant. Chem. 44, 427-447.
  4. Eliel, E. L., Wilen, S. H. and Mander L. N. (1993) Stereochemistry of Organic Compounds, Wiley Interscience publication, New York, USA.
  5. Faraj A., E1 Alaoui A., Pavia G., Pavia, G., Gosselin. G., Imbach, J. -L., Schinazi. R. F. and Sommadossi, J. P. (1997) Antiviral activities of $\beta$-enantiomers of 3'-substituted-3'-deoxythymidine analogs. Nucleosides & Nucleotides 16, 1287-1290. https://doi.org/10.1080/07328319708006172
  6. Fidanza, N. G., Suvire, F. D., Sosa G. L., Lobayan. R. M., Enrz, R. D. and Peruchena, N. M. (2001) A search for C-H... O type hydrogen bond in Lamivudine (3TC). An exploratory conformational and electronic analysis. J. Mol. Struct. (Theochem) 543, 185-193. https://doi.org/10.1016/S0166-1280(01)00346-3
  7. Fisher, M. A., Yadav, P. N. S., Yadav J., Kristol. D., Arnold, E. and Modak, M. J. (1994) Identification of a pharmacophore for nucleoside analog inhibitors directed at HIV-1 Reverse Transcriptase. J. Mol. Rec. 7, 211-214. https://doi.org/10.1002/jmr.300070309
  8. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, Jr., J. A., Stratmann, R. E., Burant, J. C., Dapprich. S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone. V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui. Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., BaOOul, A. G., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., A1- Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B. G., Chen, W., Wong, M. W., Andres, J. L., Head-Gordon, M., Replogle, E. S. and Pople, J. A. (1998) Gaussian 98 (Revision A.X) Gaussian. Inc., Pittsburgh, USA.
  9. Galisteo. D., L6pez Sastre, J. A., Martinez Garcia, H., and Nunez Miguel. R. (1995) Conformational comparative analysis of 2',3'-dideoxythymidine analogues by molecular mechanics calculations (CHEM-X) and by semiempirical methods (AM1). J. Mol. Struct. 350, 147-160 https://doi.org/10.1016/0022-2860(94)08472-T
  10. Hawkins, G. D., Giesen, D. J., Lynch G. C., Chambers, C. C., Rossi I., Storer J. W, Li J., Zhu T., Winget P., Rinaldi D., Liotard D. A., Cramer C. J., Truhlar D. G. (2001) AMSOL - version 6.7-Manual, September 26.
  11. Huang, H., Chopra, R., Verdine, G. L. and Harrison, S., (1998) Structure of a covalently trapped catalytic complex of HIV-1 Reverse Transcriptase: Implications for drug resistance. Science 282, 1669-1675. https://doi.org/10.1126/science.282.5394.1669
  12. Koch, U. and PopeJier, P. L. A. (1995) Characterization of C-H-O hydrogen bonds on teh basis of the charge density. J. Phys. Chem. 99, 9747-9754. https://doi.org/10.1021/j100024a016
  13. Kumar Anil and Mishra P.C. (1992) Structure-activity relationships for some anti-HIV drugs using electric field mapping. J. Mol. Struct. (Theochem) 277, 299-312. https://doi.org/10.1016/0166-1280(92)87148-S
  14. Lehninger A. L., Nelson D. L. and Cox, M. M. (1993) Principles of Biochemistry, Second edition, Worth Publishers, New York, USA.
  15. Marquez, V. E., Ezzitouni, A., Russ P., Maqbool A. Siddiqui, Harry Ford, Jr., Feldman, R.J., Mitsuya, H., George, C. and Barchi Jr., J. J. (1998) HIY-1 Reverse Transcriptase can discriminate between two conformationally locked carbocyclic AZT triphosphate analogues. J. Am. Chem. Soc. 120, 2780-2789. https://doi.org/10.1021/ja973535+
  16. McGuigan, C., Kinchington, D., Wang, M. F., Nicholls, S. R., Nickson, C., Galpin, S., Jeffries, D. J. and O'Connor T. J., (1993) Nucleoside analogues previously found to be inactive against HIV may be activated by simple chemical phosphorylation. FEBS Lett. 322, 249-252. https://doi.org/10.1016/0014-5793(93)81580-S
  17. McGuijan C., Pathirana, R. N., Balzarini J. and Clerq, E. (1993) Intracellular delivery of bioactive AZT nucleotides by aryl phosphate derivatives of AZT. J. Med. Chem. 36, 1048-1052. https://doi.org/10.1021/jm00060a013
  18. Mickle, T. and Nair, V. (2000) Anti-Human Immunodeficiency Virus activities of nucleosides and nucleotides: correlation with Molecular Eletrostatic Potential Data. Antimicrob. Agents Chemother. 44, 2939-2947. https://doi.org/10.1128/AAC.44.11.2939-2947.2000
  19. Motta Neto, J., Zerner, C. M. and Alencastro, R. B. (1992) A possible mechanism of molecular recognition for the Reverse Tnmscriptase of HIV-1. Int. J. Quant. Chem.: Quantum Biology Symposium. 19, 225-253.
  20. Mulliken, R. S. (1955) Electronic population analysis on LCAO-MO Molecular wave functions.1. J. Chem. Phys. 23, 1833. https://doi.org/10.1063/1.1740588
  21. Painter, G. R, Andrews, C. W. and Furman P. A. (2000) Conformation and local environment of nucleotides bound to HIV Type 1 Reverse Transcriptase (HIV-l RT) in the ground state. Nucleosides Nucleotides Nucleic Acids. 19, 13-29. https://doi.org/10.1080/15257770008032994
  22. Painter, G. R. Aulabaugh, A. E. and Andrews, C. W. (1993) A Comparison of the Conformations of the 5'-Triphosphates of Zidovudine (AZT) and lbymidine Bound to HIV-1 Reverse Transcriptase. Biochem. Biophys. Res. Commun. 191, 1166-1171. https://doi.org/10.1006/bbrc.1993.1339
  23. PcModel (1989) Molecular Modeling Software, Serena Software, Bloomington, USA.
  24. Reardon, J. E. (1992) Human immunodeficiency virus reverse transcriptase: steady-state and pre-steady-state kinetics of nucleotide incorporation. Biochemistry 31, 4473-4479. https://doi.org/10.1021/bi00133a013
  25. Spence, R. A, Kati, W. M., Anderson K. S. and Johnson, K. A. (1995) Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors. Science 267, 988-993. https://doi.org/10.1126/science.7532321
  26. Taylor, E. W., Van Roey, P., Schinazi, R. F. and Chu, C.K. (1990) A stereochemical rationale for the activity of nucleoside analogs against the AIDS virus. Antiviral Chem. Chemother 1, 163-173.
  27. Van Roey P., Taylor, E. W., Chu, C. K. and Schinazi, R. F. (1990) Correlation of molecular conformation and activity of RT inhibitors. Ann. N. Y. Acad. Sci. 616, 29-40. https://doi.org/10.1111/j.1749-6632.1990.tb17825.x
  28. Van Roey, P., Salerno J. M., Chu C. K. and Schinazi R. F. (1989) Correlation Between Preferred Sugar Ring Conformation and Activity of Nucleoside Analogues Against Human Immunodeficiency Virus. Proc. Natl. Acad. Sci. USA 86, 3929-3933. https://doi.org/10.1073/pnas.86.11.3929
  29. Van Roey, P., Salerno, J. M., Duax, W. L., Chu, K. C., Ahn, M. K. and Schinazi, R. F. (1988) Solid-State conformation of anti- Human Immunodeficiency Virus Type-1 Agents: Crystal structures of three 3'-azido-3'-deoxythyrnidine analogues. J. Am. Chem. Soc. 110, 2277-2282. https://doi.org/10.1021/ja00215a044
  30. Van Roey, P., Salerno, J. M., Chu, C. K. and Schinazi, R. F. (1989) Correlation between preferred sugar ring conformation and activity of nucleoside analogues against human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 86, 3929-3933. https://doi.org/10.1073/pnas.86.11.3929
  31. Villahermosa, M. L., Martinez-Irujo, J. J., Cabodevilla, F. and Santiago E., (1997) Synergistic inhibition of HIV-1 Reverse Transcriptase by combinations of chain terminationg nucleotides. Biochemistry 36, 13223-13231. https://doi.org/10.1021/bi970852k
  32. Wong, M. W., Frisch, M. J. and Wiberg K. B. (1991) Solvent effects I. The mediation of Electrostatic effects by solvents. J. Am. Chem. Soc. 113, 4776. https://doi.org/10.1021/ja00013a010