DOI QR코드

DOI QR Code

Agmatine Reduces Hydrogen Peroxide in Mesangial Cells under High Glucose Conditions

  • Lee, Geun-Taek (Department of Biochemistry, College of Science, Yonsei University) ;
  • Ha, Hun-Joo (Department of Endocrinology, College of Medicine, Yonsei University) ;
  • Lee, Hyun-Chul (Hyonam Kidney Laboratory, Soon Chun Hyang University) ;
  • Cho, Young-Dong (Department of Biochemistry, College of Science, Yonsei University)
  • Received : 2002.11.04
  • Accepted : 2002.12.09
  • Published : 2003.05.31

Abstract

Agmatine, an amine and organic cation, reduced $H_2O_2$ that was generated by hyperglycemia, and transcription factors such as NF-${\kappa}B$ and AP-1 activity in the mesangial cells that were exposed to high glucose. However, spermine which shares a strong nucleophilic structure with agmatine decreased the $H_2O_2$ levels and AP-1, but not the NF-${\kappa}B$ activity. Possible roles for agmatine and spermine in decreasing fibronectin are discussed, and the signaling pathway for agmatine-reduced fibronectin accumulation is presented.

Keywords

References

  1. Aydin, A., Orhan. H., Sayal, A., Ozata, M., Sarnn, G. and Isimer, A. (2001) Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control. Clin. Biochem. 34, 65-70. https://doi.org/10.1016/S0009-9120(00)00199-5
  2. Azuma, M., Motegi, K., Aota, K., Yamashita, T., Yoshida, H. and Sato, M. (1999) TGF-beta1 inhibits NF-kappaB activity through induction of IkappaB-alpha expression in human salivary gland cells: a possible mechanism of growth suppression by TGF-beta1. Exp. Cell Res. 250, 213-222. https://doi.org/10.1006/excr.1999.4503
  3. Bass, D. A, Parce, J. W., Dechatelet, L. R., Szejda, P., Seeds, M. C. and Thomas, M. (1983) Flow cytometric studies of oxidative products formation by neutrophils: A graded response to membrane stimulation. J. Immunol. 130, 1910-1917.
  4. Chang, N. S. (2000) TGF-beta-induced matrix proteins inhibit p42/44 MAPK and JNK activation and suppress TNF-mediated IkappaBalpha degradation and NF-kappaB nuclear translocation in L929 fibroblasts. Bioch. Biophys. Res. Commun. 267, 194-200. https://doi.org/10.1006/bbrc.1999.1909
  5. Cruz. M., Ruiz-Torres, P., Alcami, J., Diez-Marques, L., Ortega-Velazquez, R., Chen, S., Puyol, M. R., Ziyadeh, F. N. and Puyol, D. R. (2001) Hydrogen peroxide increases extraceJlular matrix mRNA through TGF$\beta$ in human mesangial cells. Kidney Int. 59, 87-95. https://doi.org/10.1046/j.1523-1755.2001.00469.x
  6. Deng, G., Vazid, N. D., Jabbari, B., Ni, Z. and Yan, X. X. (2001) Increased tyrosine nitration of the brain in chronic renal insufficiency: reversal by antioxidant therapy and angiotensin-converting enzyme inhibition. J. Am. Soc. Nephrol. 12, 1892-1899.
  7. Eickelberg, O., Pansky, A., Mussmann. R., Bihl. M., Tamm. M., Hildebrand, P., Perruchoud, A. P. and Roth, M. (1999) Transforming growth factor-beta1 induces interleukin-6 expression via activating protein-1 consisting of JunD homodimers in ptimary human lung fibroblasts. J. BioI. Chem. 274, 12933-12938. https://doi.org/10.1074/jbc.274.18.12933
  8. Ha. H. and Lee, H. B. (2000) Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose. Kidney Int. 58, 19-25.
  9. Ha, H., Yu, M. R., Choi. Y. J., Kitamura, M. and Lee. H. B. (2002) Role of high glucose-induced nuclear factor-kappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells. J. Am. Soc. Nephrol. 13, 894-902.
  10. Ishikawa, Y., Yokoo, T. and Kitamura. M. (1997) c-Jun/AP-1, but not NF-kappaB. is a mediator for oxidant-initiated apoptosis in glomerular mesangial cells. Biochem. Biophys. Res. Commun. 240. 496-501. https://doi.org/10.1006/bbrc.1997.7665
  11. Kim. S. Y., Kim. R. H., Huh, T. L. and Park, J. W. (2001) a-Pheny1-N-t-butylnitrone protects oxidative damage to HepG2 cells. J. Biochem. Mol. BioI. 34, 43-46
  12. Kinter, M., Wolstenholme. J. T., Thornhill. B. A., Newton, E. A., McCormick, M. L. and Chevalier. R. L. (1999) Unilateral urethral obstruction impairs renal antioxidant enzyme activation during sodium depletion. Kidney Int. 55, 1327-1334. https://doi.org/10.1046/j.1523-1755.1999.00358.x
  13. Koo. J. R., Ni, Z., Oviesi, F. and Vaziri, N. D. (2002) Antioxidant therapy potentiates antihypertensive action of insulin in diabetic rats. Clin. Exp. Hyperfens. 24, 333-344. https://doi.org/10.1081/CEH-120004795
  14. Kwon, H., Kim. K. S., Park, S., Lee. D. K. and Yang. C. H. (2001) Inhibitory effect of paeoniflotin on Fos-Jun-DNA complex formation and stimulation of apoptosis in HL-60 cells. J. Biochem. Mol. Biol. 34, 28-32.
  15. Lee, K. A., Bindereif. A. and Green, M. R. (1988) A small-scale procedure for preparation of nuclear extracts that support efficient transcription and pre-mRNA splicing. Gene Anal. Tech. 5, 22-31. https://doi.org/10.1016/0735-0651(88)90023-4
  16. Li. G., Regunathan, S., Barrow. C. J., Eshraghi, J., Cooper, R. and Reis, D. J. (1994) Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263, 966-969. https://doi.org/10.1126/science.7906055
  17. Mackay. K., Striker, L. J., Elliot, S., Pinkert, C. A., Btinster, R. L. and Striker, G. E. (1988) Glomerular epithelial, mesangial and endothelial cell lines from transgenic mice. Kidney Int. 33, 677-684. https://doi.org/10.1038/ki.1988.53
  18. Mark, J., L., William. F. N., Orjan, W. P., Volker, V., Kirsten. M., Margarida, M., Joseph, S., Paul, I., Scott. C. T. and Roland, C. B. (1996) Agmatine, a bioactive metabolite of argmme. Production, degradation, and functional effects in the kidney of the rat. J Clin. Invest. 97, 413-420. https://doi.org/10.1172/JCI118430
  19. Marx, M., Trittenwein, G., Aufricht, C., Hoeger, H. and Lubec, B. (1995) Agmatine and spermidine reduce collagen accumulation in kidneys of diabetic db/db mice. Nephron 69, 155-158. https://doi.org/10.1159/000188432
  20. Mezzano, S. A., Barria, M., Droguett, M. A., Burgos, M. E., Ardiles, L. G., Flores, C. and Egido, J. (2001) Tubular NF-kappaB and AP-1 activation in human proteinuric renal disease. Kidney Int. 60, 1366-1377. https://doi.org/10.1046/j.1523-1755.2001.00941.x
  21. Oh, J. H., Ha, H., Yu, M. R. and Lee, H. B. (1998) Sequential effects of high glucose on mesangial ceIl transforming growth factor-$\beta$1 and fibronectin synthesis. Kidney Int. 54, 1872-1878. https://doi.org/10.1046/j.1523-1755.1998.00193.x
  22. Ohtake, T., Kimura, M., Nishimura, M. and Hishida, A. (1997) Roles of reactive oxygen species and antioxidant enzymes in murine daunomycin-induced nephropathy. J. Lab. Clin. Med. 129, 81-88. https://doi.org/10.1016/S0022-2143(97)90164-5
  23. Onozato, M. L., Tojo, A., Goto, A., Fujita, T. and Wilcox, C. S. (2002) Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: effects of ACEI and ARB. Kidney Int. 61, 186-194. https://doi.org/10.1046/j.1523-1755.2002.00123.x
  24. Peng, H., Takano, T., Papillon, J., Bijian, K., Khadir, A. and Cybulsky, A. V. (2002) Complement activates the c-Jun N- terminal kinase/stress-activated protein kinase in glomerular epithelial cells. J. Immunol. 169, 2594-2601. https://doi.org/10.4049/jimmunol.169.5.2594
  25. Sakurai, H., Miyoshi, H., Toriumi, W. and Sugita, T. (1999) Functional interactions of transforming growth factor beta-activated kinase 1 with IkappaB kinases to stimulate NF-kappaB activation. J. Biol. Chem. 274, 10641-10648. https://doi.org/10.1074/jbc.274.15.10641
  26. Sozmen, E. Y., Sozmen, B., Delen, Y. and Onat, T. (2001) Catalase/superoxide dismutase (SOD) and catalase/paraoxonase (PON) ratios may implicate poor glycemic control. Arch. Med. Res. 32, 283-287. https://doi.org/10.1016/S0188-4409(01)00285-5
  27. Troniet, M. R., Rudd, M. A. and Loscalzo, J. (2001) Oxidative stress and renal dysfunction in salt-sensitive hypertension. Kidney & Blood Pressure Res. 24, 116-123. https://doi.org/10.1159/000054217

Cited by

  1. Identification of Differentially Expressed Proteins in Imatinib Mesylate-resistant Chronic Myelogenous Cells vol.38, pp.6, 2005, https://doi.org/10.5483/BMBRep.2005.38.6.725
  2. Molecular Cloning, Identification and Characteristics of a Novel Isoform of Carbamyl Phosphate Synthetase I in Human Testis vol.38, pp.1, 2005, https://doi.org/10.5483/BMBRep.2005.38.1.028
  3. Agmatine Protects Against 6-OHDA-Induced Apoptosis, and ERK and Akt/GSK Disruption in SH-SY5Y Cells vol.36, pp.6, 2016, https://doi.org/10.1007/s10571-015-0266-7
  4. Agmatine ameliorates atherosclerosis progression and endothelial dysfunction in high cholesterol-fed rabbits 2014, https://doi.org/10.1111/jphp.12204
  5. Protective effects of agmatine against d-galactosamine and lipopolysaccharide-induced fulminant hepatic failure in mice vol.22, pp.3, 2014, https://doi.org/10.1007/s10787-013-0188-2
  6. Resveratrol protects against homocysteine-induced cell damage via cell stress response in neuroblastoma cells vol.93, pp.1, 2015, https://doi.org/10.1002/jnr.23453
  7. Agmatine effects on mitochondrial membrane potential andNF-κB activation protect against rotenone-induced cell damage in human neuronal-like SH-SY5Y cells vol.116, pp.1, 2011, https://doi.org/10.1111/j.1471-4159.2010.07085.x
  8. Depressive-like behavior induced by tumor necrosis factor-α is abolished by agmatine administration vol.261, 2014, https://doi.org/10.1016/j.bbr.2013.12.038
  9. Retroviral Expression of Arginine Decarboxylase Attenuates Oxidative Burden in Mouse Cortical Neural Stem Cells vol.20, pp.3, 2011, https://doi.org/10.1089/scd.2010.0312