DOI QR코드

DOI QR Code

Ex vivo Cytotoxicity of the Bacillus thuringiensis Cry4B δ-Endotoxin to Isolated Midguts of Aedes aegypti Larvae

  • Barusrux, Sahawat (Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus) ;
  • Sramala, Issara (Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus) ;
  • Katzenmeier, Gerd (Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus) ;
  • Bunyaratvej, Ahnond (Institute of Science and Technology for Research and Development, Mahidol University, Salaya Campus) ;
  • Panyim, Sakol (Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus) ;
  • Angsuthanasombat, Chanan (Institute of Science and Technology for Research and Development, Mahidol University, Salaya Campus)
  • Received : 2002.10.24
  • Accepted : 2003.01.10
  • Published : 2003.05.31

Abstract

The pathological effect of the Bacillus thuringiensis Cry $\delta$-endotoxins on susceptible insect larvae had extensive damage on the midgut epithelial cells. In this study, an ex vivo assay was devised for assessing the insecticidal potency of the cloned Cry4B mosquito-larvicidal protein that is expressed in Escherichia coli. Determination of toxicity was carried out by using a cell viability assay on the midguts that were dissected from 5-day old Aedes aegypti mosquito larvae. After incubation with the toxin proteins, the number of viable epithelial cells was determined photometrically by monitoring the quantity of the bioreduced formazan product at 490 nm. The results showed that the 65-kDa trypsin-activated Cry4B toxin exhibited toxic potency ca. 3.5 times higher than the 130-kDa Cry4B protoxin. However, the trypsin-treated products of the non-bioactive Cry4B mutant (R158A) and the lepidopteran-specific Cry1Aa toxin displayed relatively no ex vivo activity on the mosquito-larval midguts. The ex vivo cytotoxicity studies presented here confirms data that was obtained in bioassays.

Keywords

References

  1. Angsuthanasombat, C., Chungjatuporochai, W., Kertbundit, S., Luxananil, P., Settasatian, C., Wilairat, P. and Panyim, S. (1987) Cloning and expression of 130-kDa mosquito-larvicidal $\delta$-endotoxin gene of Bacillus thuringiensis var. israelensis in Escherichia coli. Mol. Gen. Genet. 208, 384-389. https://doi.org/10.1007/BF00328128
  2. Angsuthanasombat, C., Crickmore, N. and Ellar D. J. (1991) Cytotoxicity of a cloned Bacillus thuringiensis subsp. israelensis CryIVB toxin to an Aedes aegypti cell line. FEMS Microbiol. Lett. 83, 273-276. https://doi.org/10.1111/j.1574-6968.1991.tb04476.x
  3. Angsuthanasombat, C., Crickmore, N. and Ellar, D. J. (1992) Comparison of Bacillus thuringiensis subsp. israelensis CryIVA and CryIVB cloned toxins reveals synergism in vivo. FEMS Microbiol. Lett. 94, 63-68. https://doi.org/10.1111/j.1574-6968.1992.tb05290.x
  4. Angsuthanasombat, C., Crickmore. N. and Ellar, D. J. (1993) Effects on toxicity of eliminating a cleavage site in a predicted interhelical loop in Bacillus thuringiensis CryIVB delta-endotoxin. FEMS Microbiol. Lett. 111, 255-261.
  5. Aronson, A. I., Beckman, W. and Dunn, P. (1986) Bacillus thuringiensis and related insect pathogens. Microbiol Rev. 50, 1-24.
  6. Cory, A. H., Owen, T. C., Barltrop. J. A. and Cory J. G. (1991) Use of an aqueous soluble tetrazoliumlformazan assay for cell growth assays in culture. Cancer Commun. 3, 207-212.
  7. Crickmore, N., Zeigler, D. R., Feitelson. J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J. and Dean, D. H. (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. BioI. Rev. 62, 807-813.
  8. Hink, W. F. (1972) A Catalog of Invertebrate Cell Lines. Vago, C. (ed.), 2(11). Academic Press, London, UK.
  9. Hofte, H. and Whiteley, H. R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242-255.
  10. Knowles. B. H. and ElIar, D. J. (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis $\delta$-endotoxins with different insect specificity. Biochem. Biophys. Acta 924. 509-518. https://doi.org/10.1016/0304-4165(87)90167-X
  11. Knowles, B. H. (1994) Mechanism of action of Bacillus thuringiensis insecticidal $\delta$-endotoxins. Adv. Insect. Physiol. 24, 275-308. https://doi.org/10.1016/S0065-2806(08)60085-5
  12. Nicholls, C. N., Admad, W. and Ellar, D. J. (1989) Evidence for two different types of insecticidal P2 toxins with dual specificity in Bacillus thuringiensis subspecies. J. Bacteriol. 171, 5141-5147.
  13. Ravoahangimalala. O. and Charles, J. F. (1995) In vitro binding of Bacillus thuringiensis var. israelensis individual toxins to midgut cell of Alwpheles gambiae larvae (diptera: culicidae). FEMS Lett. 362. 111-115.
  14. Schnepf. E., Crickmore, N., Van Rie, J., Lereclus. D., Baum. J., Feitelson. J., Zeigler. D. R. and Dean, D. H. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev: 62. 775-806.
  15. Schwartz, J. -L., Garneau, L.. Masson, L. and Brousseau, R. (1991) Early response of cultured lepidopteran cells to exposure to $\delta$-endotoxin from Bacillus thuringiensis: involvement of calcium and anionic channels. Biochim. Biophys. Acta 1065, 250-260. https://doi.org/10.1016/0005-2736(91)90237-3
  16. Sramala, I., Uawithya, P., Chanama. U., Leetachewa, S., Krittanai. C., Katzenmeier, G., Panyim. S. and Angsuthanasombat, C. (2000) Single proline substitutions of selected helices of the Bacillus thuringiensis Cry4B toxin affect inclusion solubility and larvicidal Activity. J. Biocliem. Mol. Biol. Biophys. 4. 187-193.
  17. Sramala, I., Leetachewa, S., Krittanai, C., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2001) Charged residue screening in helix 4 of the Bacillus thuringiensis Cry4B toxin reveals one critical residue for larvicidal activity. J. Biochem. Mol. Biol. Biophys. 5, 219-225.
  18. Thomas, W. E. and Ellar. D. J. (1983) Bacillus thuringiensis vat israelensis crystal $\delta$-endotoxin: Effects on insect and mammalian cells in vitro and in vivo. J. Cell Sci. 60, 181-197.
  19. Uawithya, P., Tuntitippawan. T., Katzenmeier, G., Panyim. S. and Angsuthanasombat, C. (1998) Effects on larvicidal activity of single proline substitutions in $\alpha$3 or $\alpha$4 of the Bacillus thuringiensis Cry4B toxin. Biochem. Mol. BioI. Int. 44, 825-832.
  20. Zar. J. (1984) Biostatistical Analysis, 2nd ed., Prentice Hall, New Jersey, USA.