DOI QR코드

DOI QR Code

Single-strand DNA Binding of Actinomycin D with a Chromophore 2-Amino to 2-Hydroxyl Substitution

  • Yoo, Hoon (Department of Pharmacology and Dental Therapeutics, College of Dentistry, Chosun University) ;
  • Rill, Randolph L. (Department of Biomedical Sciences, The Florida State University)
  • Received : 2002.11.15
  • Accepted : 2003.01.24
  • Published : 2003.05.31

Abstract

A modified actinomycin D was prepared with a hydroxyl group that replaced the amino group at the chromophore 2-position, a substitution known to strongly reduce affinity for double-stranded DNA. Interactions of the modified drug on single-stranded DNAs of the defined sequence were investigated. Competition assays showed that 2-hydroxyactinomycin D has low affinity for two oligonucleotides that have high affinities ($K_a\;=\;5-10{\times}10^6\;M^{-1}$ oligomer) for 7-aminoactinomycin D and actinomycin D. Primer extension inhibition assays performed on several single-stranded DNA templates totaling around 1000 nt in length detected a single high affinity site for 2-hydroxyactinomycin D, while many high affinity binding sites of unmodified actinomycin D were found on the same templates. The sequence selectivity of 2-hydroxyactinomycin D binding is unusually high and approximates the selectivity of restriction endonucleases. Binding appears to require a complex structure, including residues well removed from the polymerase pause site.

Keywords

References

  1. Brockmann, H. (1974) History and chemistry: modification of the actinomycin molecule. Cancer Chemother. Rep. 58, 9-20.
  2. Cantor, C. R., Warshaw, M. M. and Shapiro, H. (1970) Oligonucleotide interactions. 3. Circular dichroism studies of the confonnation of deoxyoligonucleotides. Biopolymers 9, 1059-1077. https://doi.org/10.1002/bip.1970.360090909
  3. Chen, F. M. (1988) Binding specificities of actinomycin D to self-complementary tetranucleotide sequences -XGCY-. Biochemistry 27, 6393-6397. https://doi.org/10.1021/bi00417a030
  4. Crothers, D. M. and Muller, W. (1974) Origins of base specificity in actinomycin and other DNA ligands. Cancer Chemother. Rep. 58, 97-100.
  5. Davis, W. R., Gabbara, S., Hupe, D. and Peliska, J. A. (1998) Actinomycin D inhibition of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase and nucleocapsid protein. Biochemistry 37, 14213-14221. https://doi.org/10.1021/bi9814890
  6. Goldberg, I. H. and Friedman, P. A. (1971) Antibiotics and nucleic acids. Annu. Rev. Biochem. 40, 775-810. https://doi.org/10.1146/annurev.bi.40.070171.004015
  7. Goodisman, J., Rehfuss, R., Ward, B. and Dabrowiak, J. C. (1992) Site-specific binding constants for actinomycin D on DNA determined from footprinting studies. Biochemistry 31. 1046-1058. https://doi.org/10.1021/bi00119a013
  8. Graves, D. E. and Wadkins, R. M. (1989) 7-Azidoactinomycin D: a novel probe for examining actinomycin D-DNA interactions. J. Biol. Chem. 264, 7262-7266.
  9. Guo, J., Wu, T., Bes, J., Henderson, L. E. and Levin, J. G. (1998) Actinomycin D inhibits human immunodeficiency virus type 1 minus-strand transfer in in vitro and endogenous reverse transcriptase assays. J. Virol. 72, 6716-6724.
  10. Hecker, K. H. and Rill, R. L. (1997) Synthetic polynucleotide templates for characterizing sequence-selective small molecule/nucleic acid interactions. Anal. Biochem. 244, 67-73. https://doi.org/10.1006/abio.1996.9824
  11. Jeeninga, R. E., Huthoff, H. T., Gultyaev, A. P. and Berkhout, B. (1998) The mechanism of actinomycin D-mediated inhibition of HIV-1 reverse transcription. Nucleic Acids Res. 26, 5472-5479. https://doi.org/10.1093/nar/26.23.5472
  12. Jeong, H. S., Jeong, I. C., Kim, A., Kang, S. W., Kang., H. S., Kim, Y. J., Lee, S. H. and Park, J. S. (2002) Cloning of the large subunit of replication protein A (RPA) from yeast Saccharomyces cerevisiae and its DNA binding activity through redox potential. J. Biochem. Mol. Biol. 35, 194-198. https://doi.org/10.5483/BMBRep.2002.35.2.194
  13. Jones, R. L., Scott, E. V., Zon, G., Marzilli, L. G. and Wilson, W. D. (1988) An NMR investigation of the binding of the anticancer drug actinomycin D to oligodeoxyribonucleotides with isolated 5'd(GC)3' binding sites. Biochemistry 27, 6021-6026. https://doi.org/10.1021/bi00416a029
  14. Kamitori, S. and Takusagawa, F. (1992) Crystal structure of the 2 : 1 complex between d(GAAGCTTC) and the anticancer drug actinomycin D. J. Mol. Biol. 225, 445-456. https://doi.org/10.1016/0022-2836(92)90931-9
  15. Kang, J. S., Abugo, O. O. and Lakowicz, J. R. (2002) Dynamics of supercoiled and relaxed pTZ18U plasmids probed with a long-lifetime metal-ligand complex. J. Biochem. Mol. BioI. 35, 389-394. https://doi.org/10.5483/BMBRep.2002.35.4.389
  16. Krugh, T. R. and Chen, Y. C. (1975) Actinomycin D-deoxynucleotide complexes as models for the actinomycin D-DNA complex. The use of nuclear magnetic resonance to detennine the stoichiometry and the geometry of the complexes. Biochemistry 14, 4912-4922. https://doi.org/10.1021/bi00693a021
  17. Mauger, A. B., Stuart, O. A. and Katz. E. (1991) Synthesis and properties of some peptide analogues of actinomycin D. J. Med. Chem. 34, 1297-1301. https://doi.org/10.1021/jm00108a009
  18. Mitsuya, H., Yarchoan, R. and Broder, S. (1990) Molecular targets for AIDS therapy. Science 249. 1533-1544. https://doi.org/10.1126/science.1699273
  19. Moore, S., Kondo, M., Copeland, M. and Meienhofer, J. (1975) Synthesis and antitumor activity of 2-deamino-and N2-(gamma-hydroxypropyl) actinomycin D. J. Med. Chem. 18, 1098-1101. https://doi.org/10.1021/jm00245a010
  20. Phillips, D. R. and Crothers, D. M. (1986) Kinetics and sequence specificity of drug DNA interactions: an in vitro transcription assay. Biochemistry 25, 7355-7362. https://doi.org/10.1021/bi00371a017
  21. Rill, R. L. and Hecker, K. H. (1996) Sequence-specific actinomycin D binding to single-stranded DNA inhibits HIV reverse transcriptase and other polymerases. Biochemistry 35, 3525-3533. https://doi.org/10.1021/bi9530797
  22. Rill, R. L., Marsch, G. A. and Graves, D. E. (1989) 7-Azidoactinomycin D: a photoaffinity probe of the sequence specificity of DNA binding by actinomycin D. J. Biomol. Struct. Dyn. 7, 591-605. https://doi.org/10.1080/07391102.1989.10508509
  23. Sengupta, S. K. and Schaer, D. (1978) The interaction of 7-substituted actinomycin D analogs with DNA. Biochim. Biophys. Acta 521, 89-100. https://doi.org/10.1016/0005-2787(78)90251-4
  24. Shinomiya, M., Chu, W., Carlson, R. G., Weaver, R. F. and Takusagawa, F. (1995) Structural, physical, and biological characteristics of RNA:DNA binding agent N8 actinomycin D. Biochemistry 34, 8481-8491. https://doi.org/10.1021/bi00026a032
  25. Shuman. S. (1995) Vaccinia virus DNA ligase: specificity, fidelity, and inhibition. Biochemistry 34, 16138-16147. https://doi.org/10.1021/bi00049a029
  26. SobeIl, H. M. (1985) Actinomycin and DNA transcription. Proc. Natl. Acad. Sci. USA 82, 5328-5331.
  27. Sobell, H. M. and Jain, S. C. (1972) Stereochemistry of actinomycin binding to DNA. II. Detailed molecular model of actinomycin-DNA complex and its implications. J. Mol. Biol. 68, 21-34. https://doi.org/10.1016/0022-2836(72)90259-8
  28. Takusagawa, F. (1996) Physical and biological characteristics of the antitumor drug actinomycin D analogues derivatized at N-methy1-L-valine residues. Biochemistry 35, 13240-13249. https://doi.org/10.1021/bi960828r
  29. Takusagawa., F. (1997) Selectivity of F8-actinomycin D for RNA:DNA hybrids and its anti-leukemia activity. Bioorg. Med. Chem.5, 1197-1207. https://doi.org/10.1016/S0968-0896(97)00062-X
  30. Tong, G. (1996) A convergent solid-phase synthesis of actinomycin analogues towards implementation of double-combinatorial chemistry. Bioorg. Med. Chem. 4, 693-698. https://doi.org/10.1016/0968-0896(96)00065-X
  31. Tuteja, N., Phan, T. N., Thteja, R., Ochem, A. and Falaschi, A.(1997) Inhibition of DNA unwinding and ATPase activities of human DNA helicase II by chemotherapeutic agents. Biochem. Biophys. Res. Commun. 236, 636-640. https://doi.org/10.1006/bbrc.1997.7021
  32. Wadkins, R. M., Jares-Erijman, E. A., Klement, R., Rudiger, A. and Jovin, T. M. (1996) Actinomycin D binding to single-stranded DNA: sequence specificity and hemi-intercalation model from fluorescence and 1H NMR spectroscopy. J. Mol. Biol. 262, 53-68. https://doi.org/10.1006/jmbi.1996.0498
  33. Wadkins, R. M. and Jovin, T. M. (1991) Actinomycin D and 7-aminoactinomycin D binding to single-stranded DNA. Biochemistry 30, 9469-9478. https://doi.org/10.1021/bi00103a012
  34. Wadkins, R. M., Vladu, B. and Tung, C. S. (1998) Actinomycin D binds to metastable hairpins in single-stranded DNA. Biochemistry 37, 11915-11923. https://doi.org/10.1021/bi9809730
  35. Waring, M. J. (1981) DNA modification and cancer. Annu. Rev. Biochem. 50, 159-192. https://doi.org/10.1146/annurev.bi.50.070181.001111
  36. Wong-Staal, F. and Haseltine, W. A. (1992) Regulatory genes of human immunodeficiency viruses. Mol. Genet. Med. 2, 189-219.
  37. Yanisch-Perron, C., Vieira, J. and Messing, J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103-119. https://doi.org/10.1016/0378-1119(85)90120-9
  38. Zhou, N., James T. L. and Shafer, R. H. (1989) Binding of actinomycin D to [d(ATCGAT)]_{2}: NMR evidence of mulltiple complexes. Biochemistry 28, 5231-5239. https://doi.org/10.1021/bi00438a047

Cited by

  1. Characterization of New Potential Anticancer Drugs Designed To Overcome Glutathione Transferase Mediated Resistance vol.8, pp.5, 2011, https://doi.org/10.1021/mp2000692
  2. Fungal laccases as green catalysts for dye synthesis vol.47, pp.9, 2012, https://doi.org/10.1016/j.procbio.2012.05.006
  3. Influence of Solution Acidity on Structure of Actinocin Derivatives and Their Affinity to DNA Studied as a Function of pH by Raman Spectroscopy vol.42, pp.8, 2009, https://doi.org/10.1080/00387010903022285