DOI QR코드

DOI QR Code

The Effects of a High-fat or High-sucrose Diet on Serum Lipid Profiles, Hepatic Acyl-CoA Synthetase, Carnitine Palmitoyltransferase-I, and the Acetyl-CoA Carboxylase mRNA Levels in Rats

  • Ryu, Mi-Hyun (Department of Food Science and Human Nutrition, Chonbuk National University) ;
  • Cha, Youn-Soo (Institute for Molecular Biology and Genetics, Chonbuk National University)
  • Received : 2003.01.14
  • Accepted : 2003.02.07
  • Published : 2003.05.31

Abstract

The purpose of this study was to investigate the effects of altering relative intakes of fat and carbohydrates on serum lipid profiles, hepatic acyl-CoA synthetase (ACS), carnitine palmitoyltransferase-I (CPT-I), and the acetyl-CoA carboxlyase (ACC) mRNA level in Sprague-Dawley rats. For four weeks the rats were fed either an AIN-76 diet or one of its modified diets that were supplemented with 20% beef tallow (high-fat diet, HF) and 66.3% sucrose (highsucrose diet, HS). The HS group had significantly higher serum triglyceride and total cholesterol concentrations when compared with the other groups. Serum LDL-cholesterol concentrations in the HS and HF groups were significantly higher when compared to the normal diet (ND) group. Serum HDL-cholesterol levels of the ND and HS groups were significantly higher than those of the HF group. The hepatic total lipid level of the HF group was significantly higher than those of other groups; triglyceride levels of the HS and HF groups were significantly higher than those of the ND group. Hepatic ACS mRNA levels of the HF group were significantly higher than those of the ND group. Hepatic CPT-I mRNA levels were higher in the HF group than other groups. Also, ACC mRNA levels in the liver increased in the HF group. In conclusion, changes in the composition of dietary fat and carbohydrates could affect the hepatic ACS, CPT-I, and ACC mRNA levels. These results facilitate our understanding of the coordinated regulation of the ACS, CPT-I, and ACC mRNA levels and will serve to enhance our understanding of the molecular mechanisms that underlie the regulation of fatty acid metabolism.

Keywords

References

  1. Ahrens, E. H., Hirsch, J., Insull. W., Tsaltas. T. T., Blomstrand. R. and Peterson, M. L. (1957) The intluence of dietary fats on serum lipids in man. Lancet 87. 943-953.
  2. Albrink. M. J. and Ullrich. M. D. (1986) Interaction of dietary sucrose and fiber on serum lipids in healthy young men fed high-carbohydrate diets. Am. J. Clin. Nutr. 43, 419-428.
  3. Allain. C. C., Poon. L. S., Chan. C. S., Richman, W. and Fu, P. C. (1974) Enzymatic determination of total serum cholesterol. Clin. Chem. 20. 470-475.
  4. American Institute of Nutrition (1977) Report of the American Institute of Nutrition ad hoc committee on standards for nutritional studies. J. Nutr. 107, 1340-1348.
  5. Azain. M. J., Fukuda, N., Chao, F. F., Yamamoto, M. and Ontko, J. A. (1985) Contribution of fatty acid and sterol synthesis to triglyceride and cholesterol secretion by the perfused rat liver in genetic hyperlipemia and obesity. J. Biol. Chem. 260. 174- 181.
  6. Bai, D. H.. Pape. M. E., Lopez-Casillas. F., Luo. X. C., Dixon. J. E. and Kim, K. H. (1986) Molecular cloning of cDNA for acetyl-coenzyme A carboxylase. J. Biol. Chem 261. 12395-12399.
  7. Barnard. R. J., Faria. D. J., Menges. J. E. and Martin, D. A. (1993) Effects of a high-fat, sucrose diet on serum insulin and related atherosclerotic risk factors in rats. Atherosclerosis 100. 229-236. https://doi.org/10.1016/0021-9150(93)90209-D
  8. Barnard. R. J., Roberts. C. K., Varon, S. M. and Berger. J. J. (1998) Adipocyte and muscle changes in response to diet leading to obesity. Diab. Res. 33, 213-228.
  9. Bianchi. A., Evans. J. L., Iverson. A. J., Nordlund A. C., Watts. T. D. and Witters. L. A. (1990) Identification of an isozymic form of acety1-CoA carboxylase. J. BioI. Chem. 265, 1502-1509.
  10. Bonnefont. J. P., Demaugre, F., Prip-Buus, C., Saudubray, J. M., Brivet, M., Abadi, and Thuiller. L., (1999) Carnitine palmitoyltransferase deficiencies. Mol. Genet. Metab. 68. 424-440. https://doi.org/10.1006/mgme.1999.2938
  11. Chen, M. T., Kaufman. L. N., Spennetta, T. and Shrago, E. (1992) Effects of high-fat feeding to rats on the interrelationship of body weight. plasma insulin. and fatty acy1-coenzyme A esters in liver and skeletal muscle. Metabolism 41. 564-569. https://doi.org/10.1016/0026-0495(92)90221-U
  12. DeFronzo, R. A. and Ferrannini, E. (1991) lnsulin resistance: a multifaced syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14, 173-194. https://doi.org/10.2337/diacare.14.3.173
  13. Fernandez, M. L., Abde1-Fattah, G. and McNarnara, D. J. (1995) Differential effects of simple vs. complex carbohydrates on VLDL secretion rates and HDL metabolism in the guinea pig. Biochim. Biophys. Acta 1256, 31-38. https://doi.org/10.1016/0005-2760(95)00007-Y
  14. Friedewald, W. T., Levy, R. I. and Fredrickson. D. S. (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without the use of the preparative ultracentrifuge. Clin. Chem. 18. 499-502.
  15. Frings. C. S. and Dunn, R. T. (1970) A colorimetric method for determination of total serum lipid based on the sulfophospho-vanillin reaction. Am. J. Clin. Pathol. 53, 89-91.
  16. Fukuda, N., Azain, M. J. and Ontko. J. A. (1982) Altered hepatic metabolism of free fatty acids underlying hypersecretion of very low density lipoproteins in the genetically obese Zucker rats. J. Biol. Chem. 257, 14066-14072.
  17. lritani, N. (1992) Nutritional and hormonal regulation of lipogenic enzyme gene expression in rat liver. Eur. J. Biochem. 205. 433-442. https://doi.org/10.1111/j.1432-1033.1992.tb16797.x
  18. Kim, K. H., Lopez-Casillas, F., Bai, D. H., Luo, X. and Pape, M. E. (1989) Role of reversible phosphorylation of acety1-CoA carboxylase in long-chain fatty acid synthesis. FASEB J. 3. 2250-2256.
  19. Koh, E. T., Mueller. J., Osilesi. O., Knehans, A. and Reiser, S. (1985) Effect of fructose feeding on lipid parameters in obese and lean, diabetic and nondiabetic Zucker rats. J. Nutr. 115, 1274-1284.
  20. Kolodziej, M. P., Crilly, P. J., Corstorphine, C. G. and Zammit, V. A. (1992) Development and characterization of a polyclonal antibody against rat liver mitochondrial overt carnitine palrnitoyltransferase (CPT I). Distinction of CPT I from CPT II and of isoforms of CPT I in different tissues. Biochem. J. 282, 415-421.
  21. Koyama, K., Chen, G., Lee. Y. and Unger, R. H. (1997) Tissue triglycerides, insulin resistance, and insulin production:implications for hyperinsulinemia of obesity. Am. J. Physiol. Endocrinol. Metab. 273, E708-E713.
  22. Lee. J. S., Bruce, C. R., Spriet, L. L. and Hawley, J. A. (2001) Interaction of diet and training on endurance performance in rats. Exp. Physiol. 86. 499-508. https://doi.org/10.1113/eph8602158
  23. Lewin. T. M., Kim. J. H., Granger, D. A., Vance. J. E. and Coleman, R. A. (2001) Acyl-CoA synthetase isoform 1. 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently. J. Biol. Chem. 276. 24674- 24679. https://doi.org/10.1074/jbc.M102036200
  24. Loftus. T. M., Jaworsky, D. E., Frehywot, G. L., Townsend, C. A., Ronnett. G. V., Lane. M. D. and Kuhajda, F. P. (2000) Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288, 2379-2381. https://doi.org/10.1126/science.288.5475.2379
  25. Mabrouk. G. M., Helmy, J. M., Thampy, K. G. and Wakil, S. J. (1990) Acute hormonal control of acety1-CoA carboxylase. J. Biol. Chem. 265, 6330-6338.
  26. Majerus, P. W. and Kilburn, E. (1969) Acety1 coenzyme A carboxylase. The roles of synthesis and degradation in the regulation of enzyme levels in rat livers. J. Biol. Chem. 244. 6254-6262.
  27. Marno, J. C., Hirano, T., James, L., Szeto, L. and Steiner, G. (1991) Partial characterization of the fructose-induced defect in very-low-density lipoprotein triglyceride metabolism. Metabolism 40, 888-893. https://doi.org/10.1016/0026-0495(91)90061-Z
  28. McGarry, J. D. and Brown, N. F. (1997) The mitochondrial camitine palmitoyltransferase system: from concept to molecular analysis. Eur. J. Biochem. 244, 1-14. https://doi.org/10.1111/j.1432-1033.1997.00001.x
  29. McGarry, J. D. and Foster, D. W. (1980) Regulation of hepatic fatty acid oxidation and ketone body production. Annu. Rev. Biochem. 49, 395-420. https://doi.org/10.1146/annurev.bi.49.070180.002143
  30. McGarry, J. D., Takabayashi, Y. and Foster, D. W. (1978) The role of malony1-CoA in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes. J. BioI. Chem. 253. 8294-8300.
  31. Memon, R. A., Fuller. J., Moser. A. H., Smith. P. J., Grunfeld, C. and Feingold, K. R. (1999) Regulation of putative fatty acid transporters and acy1-CoA synthetase in liver and adipose tissue in ob/ob mice. Diabetes 48, 121-127. https://doi.org/10.2337/diabetes.48.1.121
  32. Miyazawa, S., Hashimoto, T. and Yokota, S. (1985) Identity of long-chain acy1-CoA synthetase of microsomes, mitochondria and peroxisomes in rat liver. J. Biochem. 98, 723-733.
  33. Mohamed, A. H., Huang. W. Y., Huang. W., Venkatachalam, K. V. and Wakil, S. J. (1993) Isolation and characterization of a novel acety1-CoA carboxylase kinase from rat liver. J. Biol. Chem. 269, 6859-6865.
  34. Mynatt. R. L., Park, E. A., Thomgate, P. E., Das, H. D. and Cook, G. A. (1994) Changes in camitine palmitoyltransferase-I mRNA abundance produced by hyperthyroidism and hypothyroidism parallel changes in activity. Biochem. Biophys. Res. Commun. 201, 932-937. https://doi.org/10.1006/bbrc.1994.1791
  35. Nassir, F., Bonen, D. K. and Davidson, N. O. (1998) Apolipoprotein(a) synthesis and secretion from hepatoma cells is coupled to triglyceride synthesis and secretion. J. Biol. Chem. 273, 17793-17800. https://doi.org/10.1074/jbc.273.28.17793
  36. Oscai, L. B., Miller, W. C. and Arnall, D. A. (1987) Effects of dietary sugar and dietary fat on food intake and body fat content in rats. Growth 51, 64-73.
  37. Pape, M. E., Lopez-Casillas, F. and Kim, K. H. (1988) Physiological regulation of acety1-CoA carboxylase gene expression: effects of diet, diabetes, and lactation on acety1-CoA carboxylase mRNA. Arch. Biochem. Biophys. 267, 104-109. https://doi.org/10.1016/0003-9861(88)90013-6
  38. Park, J. S. and Chyun, J. H. (1993) Effects of low fat diet and saturated fat supplementation on the immune status of BALB/c mouse. Korean J. Nutr. 26, 578-585.
  39. Rim-Kim, J. C. and Kang, S. A. (2001) Effect of high-fat and high-carbohydrate diet on serum leptin and lipids-concentration in rats. Korean J. Nutr. 34, 123-131.
  40. Rudeman, N. B., Saba, A. K., Vavvas, D. and Witters, L. A. (1999) Malony1-CoA, fuel sensing, and insulin resistance. Am. J. Physiol. 276, E1-E18.
  41. Saba, A. K., Kurowski, T. G. and Ruderman, N. B. (1995) A malony1-CoA fuel-sensing mechanism in muscle: effects of insulin, glucose, and denervation. Am. J. Physiol. 269, E283-E289.
  42. Shimabukuro, M., Zhou, Y. T., Levi, M. and Unger, R. H. (1998) Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc. Natl. Acad. Sci. 95, 2498-2502. https://doi.org/10.1073/pnas.95.5.2498
  43. Shimomura, I., Takahashi, M., Tokunaga, K., Keno, Y., Nakamura, T., Yamashita, S., Takemura, K., Yamamoto, T., Funabashi, T. and Matsuzawa, Y. (1996) Rapid enhancement of acy1-CoA synthetase, LPL and GLUT-4 mRNAs in adipose tissue of VMH rats Am. J. Physiol. 270, E995-E1002.
  44. Sidossis, L. S., Stuart, C. A., Shulman, G. I., Lopaschukm, G. D. and Wolfe, R. R. (1996) Glucose plus insulin regulate fat oxidation by controlling the rate of fatty acid entry into the mitochondria. J Clin. Invest. 98, 2244-2250. https://doi.org/10.1172/JCI119034
  45. Sohn, H. S., OH, S. H. and Cha, Y. S. (1999) Effects of exercise and/or high-fat diet on carnitine and carnitine palmitoyltransferase-I mRNA levels in rats. J. Korean Soc. Food. Sci. Nutr. 28, 670-676.
  46. Suzuki, H., Kawarabayasi, Y., Kondo, J., Abe, T., Nishikawa, K., Kimura, S., Hashimoto, T. and Yamamoto, T. (1990) Structure and regulation of rat long-chain acy1-CoA synthetase. J. Biol. Chem. 265. 8681-8685.
  47. Thampy, K. G. and Wakil, S. J. (1988a) Regulation of acety1-CoA carboxylase. I. Purification and properties of two forms of acety1-coenzyme A carboxylase from rat liver. J. Biol. Chem. 263, 6447-6453.
  48. Thampy, K. G. and Wakil, S. J. (l988b) Regulation of acetyl-CoA carboxylase. II. Effect of fasting and refeeding on the activity, phosphate content, and aggregation state of the enzyme. J. Biol. Chem. 263. 6454-6458.
  49. Thumelin, S., Esser, V., Charvy, D., Kolodziej, M., Zammit, V. A., McGarry, D., Girard, J. and Pegorier, J. P. (1994) Expression of liver camitine palmitoyltransferase I and II genes during development in the rat. Biochem. J. 300, 583-587.
  50. Tsujikawa, M. and Kimura, S. (1980) Changes in lipid synthesis in rat adipose tissue during development. J. Nutr. Sci. Vitaminol. 26. 367-374. https://doi.org/10.3177/jnsv.26.367
  51. Wang, C. S., Fukuda, N. and Ontko, J. A. (1984) Studies on the mechanism of hypertriglyceridemia in the genetically obese Zucker rats. J. Lipid. Res. 25, 571-579.
  52. Weiner, F. R., Smith, P. J., Wertheimer, S. and Rubin, C. S. (1992) Regulation of gene expression by insulin and tumor necrosis factor in 3T3-L1 cells. Modulation of the transcription of the genes encoding acyl-CoA synthetase and stearoyl-CoA desaturase. J. Biol. Chem. 266, 23525-23528.

Cited by

  1. A high-fructose diet induces hippocampal insulin resistance and exacerbates memory deficits in male Sprague-Dawley rats vol.18, pp.7, 2015, https://doi.org/10.1179/1476830514Y.0000000133
  2. Two unhealthy dietary habits featuring a high fat content and a sucrose-containing beverage intake, alone or in combination, on inducing metabolic syndrome in Wistar rats and C57BL/6J mice vol.60, pp.2, 2011, https://doi.org/10.1016/j.metabol.2009.12.002
  3. Effects of freeze-dried cranberry powder on serum lipids and inflammatory markers in lipopolysaccharide treated rats fed an atherogenic diet vol.5, pp.5, 2011, https://doi.org/10.4162/nrp.2011.5.5.404
  4. Lipid-Lowering Effects of Pediococcus acidilactici M76 Isolated from Korean Traditional Makgeolli in High Fat Diet-Induced Obese Mice vol.6, pp.3, 2014, https://doi.org/10.3390/nu6031016
  5. Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways vol.142, pp.3, 2014, https://doi.org/10.1016/j.pharmthera.2014.01.003
  6. Effects of a High-Fat or High-Sucrose Diet on Ultraviolet B Irradiation-Induced Carcinogenesis and Tumor Growth in Melanin-Possessing Hairless Mice vol.68, pp.5, 2016, https://doi.org/10.1080/01635581.2016.1159703
  7. Reducing Effects of Black Rice (Oryza sativa L.) Extract on Body Fat Weight in Ovariectomized Rats     vol.25, pp.3, 2015, https://doi.org/10.17495/easdl.2015.6.25.3.425
  8. Fructose containing sugars modulate mRNA of lipogenic genes ACC and FAS and protein levels of transcription factors ChREBP and SREBP1c with no effect on body weight or liver fat vol.3, pp.2, 2012, https://doi.org/10.1039/C1FO10111K
  9. Plant-Based Foods as a Source of Lipotropes for Human Nutrition: A Survey of In Vivo Studies vol.53, pp.6, 2013, https://doi.org/10.1080/10408398.2010.549596
  10. Comparative evaluation of the hypolipidemic effects of hydroxyethyl methylcellulose (HEMC) and hydroxypropyl methylcellulose (HPMC) in high fat-fed mice vol.50, pp.2, 2012, https://doi.org/10.1016/j.fct.2011.10.051
  11. Subacute Oral Toxicity Study of Korean Red Ginseng Extract in Sprague-Dawley Rats vol.29, pp.4, 2013, https://doi.org/10.5487/TR.2013.29.4.285
  12. Comparison of time course changes in blood glucose, insulin and lipids between high carbohydrate and high fat meals in healthy young women vol.3, pp.2, 2009, https://doi.org/10.4162/nrp.2009.3.2.128
  13. Farnesol, a sesquiterpene alcohol in essential oils, ameliorates serum allergic antibody titres and lipid profiles in ovalbumin-challenged mice vol.44, pp.2, 2016, https://doi.org/10.1016/j.aller.2015.05.009
  14. Grape seed extract (Vitis vinifera) partially reverses high fat diet-induced obesity in C57BL/6J mice vol.2, pp.4, 2008, https://doi.org/10.4162/nrp.2008.2.4.227
  15. Improved islet function is associated with anti-inflammatory, antioxidant and hypoglycemic potential of cinnamaldehyde on metabolic syndrome induced by high tail fat in rats vol.10, 2014, https://doi.org/10.1016/j.jff.2014.07.014
  16. Glucose and Lipid Dysmetabolism in a Rat Model of Prediabetes Induced by a High-Sucrose Diet vol.9, pp.6, 2017, https://doi.org/10.3390/nu9060638
  17. The effects of black garlic (Allium satvium) extracts on lipid metabolism in rats fed a high fat diet vol.9, pp.1, 2015, https://doi.org/10.4162/nrp.2015.9.1.30
  18. Differential effects of high-carbohydrate and high-fat diets on hepatic lipogenesis in rats vol.53, pp.4, 2014, https://doi.org/10.1007/s00394-013-0613-8
  19. Effect of sucrose and saturated-fat diets on mRNA levels of genes limiting muscle fatty acid and glucose supply in rats vol.41, pp.1, 2006, https://doi.org/10.1007/s11745-006-5070-1
  20. Millet consumption decreased serum concentration of triglyceride and C-reactive protein but not oxidative status in hyperlipidemic rats vol.30, pp.4, 2010, https://doi.org/10.1016/j.nutres.2010.04.007
  21. Insulin sensitization with a peroxisome proliferator-activated receptor   agonist prevents adrenocortical lipid infiltration and secretory changes induced by a high-sucrose diet vol.214, pp.3, 2012, https://doi.org/10.1530/JOE-12-0193
  22. Short-term and long-term effects of excessive consumption of saturated fats and/or sucrose on metabolic variables in Sprague Dawley rats: a pilot study vol.93, pp.13, 2013, https://doi.org/10.1002/jsfa.6240
  23. Hypocholesterolemic effect of quercetin-rich onion peel extract in C57BL/6J mice fed with high cholesterol diet vol.25, pp.3, 2016, https://doi.org/10.1007/s10068-016-0141-4
  24. An iTRAQ Proteomic Study Reveals an Association between Diet-Induced Enhanced Fatty Acid Metabolism and the Development of Glucose Intolerance in Prediabetic Mice vol.12, pp.3, 2013, https://doi.org/10.1021/pr300662j
  25. PGC-1β and ChREBP partner to cooperatively regulate hepatic lipogenesis in a glucose concentration-dependent manner vol.2, pp.3, 2013, https://doi.org/10.1016/j.molmet.2013.05.001
  26. Epigallocatechin-3-gallate restores the Bcl-2 expression in liver of young rats challenged with hypercholesterolemia but not in aged rats: an insight into its disparity of efficacy on advancing age vol.5, pp.5, 2014, https://doi.org/10.1039/c3fo60345h
  27. High-unsaturated-fat, high-protein, and low-carbohydrate diet during pregnancy and lactation modulates hepatic lipid metabolism in female adult offspring vol.288, pp.1, 2005, https://doi.org/10.1152/ajpregu.00351.2004