DOI QR코드

DOI QR Code

L-Arginine Ameliorates Kidney Function and Urinary Bladder Sensitivity in Experimentally-induced Renal Dysfunction in Rats

  • Mansour, Mahmoud A. (Department of Pharmacology, College of Pharmacy, King Saud University) ;
  • Al-Shabanah, Othman A. (Department of Pharmacology, College of Pharmacy, King Saud University) ;
  • El-Khashef, Hassan A. (Department of Pharmacology, College of Pharmacy, King Saud University)
  • Received : 2002.12.25
  • Accepted : 2003.02.25
  • Published : 2003.07.31

Abstract

Effects of L-arginine and NG-nitro-L-arginine methyl ester (L-NAME) on the renal dysfunction that is induced by cisplatin (CDDP) were investigated. A single dose of CDDP (7.5 mg/kg i.p.) induced renotoxicity, which was manifested by increasing the sensitivity of isolated urinary bladder rings to acetylcholine (ACh), together with a significant elevation of serum urea and creatinine, and a severe decrease in serum albumin. Moreover, renal dysfunction was further confirmed by a significant decrease of enzyme activities, such as glutathione peroxidase, GSH-Px (E.C 1.11.1.9), catalase (E.C 1.11.1.6), as well as a significant increase in lipid peroxides that were measured as malondialdhyde (MDA) in kidney tissue homogenates. The administration of L-arginine (70 mg/kg/d p.o in drinking water 5 d before and 5 d after the CDDP injection) significantly ameliorated the renotoxic effects of CDDP, as judged by restoring the normal responses of isolated bladder rings to Ach, and also by an improvement in a range of renal function indices, which included serum urea and creatinine concentrations and kidney weight. In addition, L-arginine prevents the rise of MDA, as well as a reduction of GSH-Px and catalase activities in kidney tissues homogenates. On the other hand, the administration of L-NAME (4 mg/kg/d p.o) resulted in no protection against renal dysfunction that was induced by CDDP treatment. The findings of this study suggest that L-arginine can attenuate kidney injury that is produced by CDDP treatment. In addition, L-arginine may be a beneficial remedy for CDDP-induced renal toxicity, and could be used to improve the therapeutic index of CDDP.

Keywords

References

  1. Badary, O. A., Nagi, M. N., Al-Sawaf, H. A., Al-Harbi, M. M. and Al-Bekairi, A. M. (1997) Effect of L-histidinol on cisplatin nephrotoxicity in the rat. Nephron 77, 435-439. https://doi.org/10.1159/000190321
  2. Bartles, H., Bohmer, M. and Heieri, C. (1972) Serum kreatininbestimmung ohne Enteiweissen Clin. Chim. Acta 37, 193-197. https://doi.org/10.1016/0009-8981(72)90432-9
  3. Bhardwaj, R. and Moore, P. K. (1989) The effect of arginine and nitric oxide on resistance blood vessels of the perfused rat kidney. Br. J. Pharmacol 97, 739-744. https://doi.org/10.1111/j.1476-5381.1989.tb12011.x
  4. Borch, R. F. and Pleasants, M. E. (1979) Inhibition of cisplatinum nephrotoxicity by diethyldithiocarbamate rescue in a rat model. Proc. Natl. Acad. Sci. USA 76, 6611-6614. https://doi.org/10.1073/pnas.76.12.6611
  5. Cernadas, M., Lopez-Farre, A., Riesco, A., Gallego, M., Espinosa,G., Digiuni, E., Hernando, L., Casado, S. and Caramelo, C.(1992) Renal and systemic effects of amino acids administered separately: Comparison between L-arginine and non nitric oxide donor amino acids. J. Pharmacol. Exp. Ther. 263, 1023-1029.
  6. Choi, B. -M., Pae, H. O., Jang, S. I., Kim, Y. M. and Chung, H. T. (2002) Nitric oxide as a pro-apoptotic as well as antiapoptotic modulator. J. Biochem. Mol. Biol. 35, 116-126. https://doi.org/10.5483/BMBRep.2002.35.1.116
  7. de-Belder, A. J. and Radomski, M. W. (1994) Nitric oxide in the clinical arena. J. Hypertens. 12, 617-624.
  8. Dehpour, A. R., Essalat, M., Ala, S., Ghazi-Khansari, M. andGhafourifar, P. (1999) Increase by NO synthase inhibition of lead-induced release of N-acetyl-beta-D-glucosaminidase from perfused rat kidney. Toxicology 15, 119-125.
  9. Deray, G., Dubois, M., Beaufils, H., Cacoub, P., Anouar, M.,Jaudon, M. C., Baumelou, A., Jouanneau, C. and Jacobs, C. (1988) Effects of nifedipine on cisplatinum-induced nephrotoxicity in rats. Clin. Nephrol. 30, 146-150.
  10. Ellman, G. L. (1959) Tissue sulfahydryl groups. Arch. Biochem. Biophys. 82, 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
  11. Goldstein, R. S. and Mayor, G. H. (1983) The nephrotoxicity of cisplatin. Life Sci. 32, 685-690. https://doi.org/10.1016/0024-3205(83)90299-0
  12. Hannemann, J. and Baumann, K. (1988) Cisplatin-induced lipid peroxidation and decrease of gluconeogenesis in rat kidney cortex: different effects of antioxidants and radical scavengers. Toxicology 51, 119-132. https://doi.org/10.1016/0300-483X(88)90143-6
  13. Higgins, C. P., Baehner, R. L., McCallister, J. and Boxer, L. A.(1978) Polymorphnuclear leukocytes species difference in the disposal of hydrogen peroxide ($H_2O_2$). Proc. Soc. Exp. Biol. Med. 158, 478-481. https://doi.org/10.3181/00379727-158-40230
  14. Ishikawa, M., Takayanagi, Y. and Sasaki, I. (1990) Enhancement of cisplatin toxicity by buthionine sulfoximine, a glutathionedepleting agent in mice. Res. Commun. Chem. Pathol. Pharmacol. 67, 131-141.
  15. Knight, R. J., Collis, M. G., Yates, M. S. and Bowmer, C. J.(1991) Amelioration of cisplatin-induced acute renal failure with 8-cyclopentyl-1,3-dipropylxanthine. Br. J. Pharmacol. 104, 1062-1068. https://doi.org/10.1111/j.1476-5381.1991.tb12550.x
  16. Kraus, R. J. and Ganther, H. E. (1980) Reaction of cyanide with glutathione peroxidase. Biochem. Biophys. Res. Commun. 16, 1116-1122.
  17. Li, Q., Bowmer, C. and Yates, M. (1994) Effect of arginine on cisplatin-induced acute renal failure in rat. Biochem. Pharmacol. 47, 2298-2301. https://doi.org/10.1016/0006-2952(94)90269-0
  18. Li, Q., Bowmer, C. and Yates, M. (1994) The protective effect of glycine in cisplatin nephrotoxicity: Inhibition with NG-nitro-Larginine methylester. J. Pharm. Pharmacol. 46, 346-351. https://doi.org/10.1111/j.2042-7158.1994.tb03810.x
  19. Loehrer, P. J. and Einhorn, L. H. (1984) Cisplatin. Ann. Intern. Med. 100, 704-713. https://doi.org/10.7326/0003-4819-100-5-704
  20. Misko, T. P., Moore, W. M., Kasten, T. P., Nickols, G. A., Corbett,J. A., Tilton, R. G., McDaniel, M. L., Williamson, J. R. andCurrie, M. (1993) Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. Eur. J. Pharmacol. 233, 119-125. https://doi.org/10.1016/0014-2999(93)90357-N
  21. Mostafa, A. M., Nagi, M. N., Al-Shabanah, O. A. and El-Kashef,H. A. (2000) Effect of aminoguanidine and melatonin on the response of isolated urinary bladder to acetylcholine in normal and diabetic rats. Med. Sci. Res. 28, 33-37.
  22. Nakamura, I., Takahashi, C. and Miyagawa, I. (1992) The alterations of norepinephrine and acetylcholine concentrations in immature rat urinary bladder caused by streptozotocininduced diabetes. J. Urol. 148, 423-426.
  23. Offerman, J., Meijer, S., Sleijfer, D., Mulder, N., Donker, A.,Schraffordt Koops. and H, van der Hem, G. (1984) Acute effect of cis-diamminedichloro-platinum (CDDP) on renal function. Cancer Chemother. Pharmacol. 12, 36-38. https://doi.org/10.1007/BF00255906
  24. Ohkawa, H., Ohishi, N. and Yagi, K. (1979) Assay of lipid peroxides in normal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  25. Patton, C. J. and Crouch, S. R. (1977) Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia. Anal. Chem. 49, 464-469. https://doi.org/10.1021/ac50011a034
  26. Prestayko, A. W, Crooke, S. T. and Carter, S. K. (1980) Cisplatin: Current status and new developments. Academic Press, New York, USA.
  27. Rosenberg, B. (1977) Noble metal complexes in cancer chemotherapy. Adv. Exp. Med. Biol. 91, 129-133.
  28. Safirstein, R., Winston, J., Moel, D., Dikman, S. and Guttenplan, J. (1987) Cisplatin nephrotoxicity insights into mechanism. Int. J. Androl. 10, 325-346. https://doi.org/10.1111/j.1365-2605.1987.tb00200.x
  29. Srivastava, R. C., Farookh, A., Ahmad, N., Misra, M., Hasan, S. K. and Husain, M. M. (1996) Evidence for the involvement of nitric oxide in cisplation induced toxicity in rats. Biometals 9, 139-142.
  30. Tay, L. K., Bregman, C. L., Masters, B. A. and Williams, P. D.(1988) Effect of cis-diamminedichloroplatinum on rabbit kidney in vivo and on rabbit renal proximal tubule cells in culture. Cancer Res. 48, 2538-2543.
  31. Vermeulen, N. P. and Baldew, G. S. (1992) The role of lipid peroxidation in the nephrotoxicity of cisplatin. Biochem. Pharmacol. 44, 1139-1199. https://doi.org/10.1016/0006-2952(92)90378-V
  32. Von-Hoff, D. D., Schilsky, R., Reichert, C. M., Reddick, R. L.,Rozencweig, M., Young, R. C. and Muggia, F. M. (1979) Toxic effects of cis-dichlorodiammineplatinum in man. Cancer Treat. Rep. 63, 1527-1531.
  33. Walker, E. M. and Gale, G. R. (1981) Methods of reduction of cisplatin nephrotoxicity. Ann. Clin. Lab. Sci. 11, 397-410.
  34. Wang, L., Kubodera, S., Ueno, A. and Takeda, M. (2001) Effects of nitric oxide synthesis inhibition on FK-506-induced nephrotoxicity in rats. Renal. Fail. 23, 11-19. https://doi.org/10.1081/JDI-100001279

Cited by

  1. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity vol.61, pp.3, 2009, https://doi.org/10.1016/j.etp.2008.09.003
  2. Montelukast ameliorates kidney function and urinary bladder sensitivity in experimentally induced renal dysfunction in rats vol.27, pp.2, 2013, https://doi.org/10.1111/j.1472-8206.2011.00996.x
  3. l-Arginine attenuates the ethylene glycol induced urolithiasis in ininephrectomized hypertensive rats: role of KIM-1, NGAL, and NOs vol.37, pp.4, 2015, https://doi.org/10.3109/0886022X.2015.1011967
  4. Safety Evaluation ofZingiber cassumunarRoxb. Rhizome Extract: Acute and Chronic Toxicity Studies in Rats vol.2014, 2014, https://doi.org/10.1155/2014/632608
  5. Investigation into the antioxidant role of arginine in the treatment and the protection for intralipid-induced non-alcoholic steatohepatitis vol.14, pp.1, 2015, https://doi.org/10.1186/s12944-015-0124-0