DOI QR코드

DOI QR Code

Distinction between Cold-sensitive and -tolerant Jute by DNA Polymorphisms

  • Hossain, Mohammad Belayat (Department of Biochemistry & Molecular Biology, University of Dhaka) ;
  • Awal, Aleya (Department of Biochemistry & Molecular Biology, University of Dhaka) ;
  • Rahman, Mohammad Aminur (Department of Biochemistry & Molecular Biology, University of Dhaka) ;
  • Haque, Samiul (Physiology Department, Bangladesh Jute Research Institute) ;
  • Khan, Haseena (Department of Biochemistry & Molecular Biology, University of Dhaka)
  • Received : 2002.12.31
  • Accepted : 2003.03.10
  • Published : 2003.09.30

Abstract

Jute is the principal coarse fiber for commercial production and use in Bangladesh. Therefore, the development of a high-yielding and environmental-stress tolerant jute variety would be beneficial for the agro economy of Bangladesh. Two molecular fingerprinting techniques, random-amplified polymorphic DNA (RAPD) and amplified-fragment length polymorphism (AFLP) were applied on six jute samples. Two of them were cold-sensitive varieties and the remaining four were cold-tolerant accessions. RAPD and AFLP fingerprints were employed to generate polymorphism between the cold-sensitive varieties and cold-tolerant accessions because of their simplicity, and also because there is no available sequence information on jute. RAPD data were obtained by using 30 arbitrary oligonucleotide primers. Five primers were found to give polymorphism between the varieties that were tested. AFLP fingerprints were generated using 25 combinations of selective-amplification primers. Eight primer combinations gave the best results with 93 polymorphic fragments, and they were able to discriminate the two cold-sensitive and four cold-tolerant jute populations. A cluster analysis, based on the RAPD and AFLP fingerprint data, showed the population-specific grouping of individuals. This information could be useful later in marker-aided selection between the cold-sensitive varieties and cold-tolerant jute accessions.

Keywords

References

  1. Belayat, M. H., Haque, S. and Khan, H. (2002) DNA fingerprinting of jute germplasm by RAPD. J. Biochem. Mol. Biol. 35, 414-419. https://doi.org/10.5483/BMBRep.2002.35.4.414
  2. Cheng, Z., Baldwin, B. S., Ohtani, Y. and Sameshima, K. (2000) Identification of method and genetic relationship among kenaf (Hibiscus cannabinus L.) varieties based on RAPD (random amplified polymorphic DNA) analysis. pp. 61-72, Proceedings of the Final workshop on “Application of Biotechnology in the Improvement of Jute, Kenaf and Allied Fibres- Phase II,” (IJO/AGR/10) Beijing, China.
  3. Cho, Y. G., Blair, M. W., Panaud, O. and McCouch S. R. (1996) Cloning and mapping of variety specific rice genomic DNA sequences: amplified fragment-length polymorphism (AFLP) from silver stained polyacrylamide gels. Genome 39, 373-378. https://doi.org/10.1139/g96-048
  4. Debener, T., Bartels, C. and Matiesch, L. (1996) RAPD analysis of genetic variation between a group of rose varieties and selected wild rose species. Mol. Breeding 2, 321-327. https://doi.org/10.1007/BF00437910
  5. Doyle, J. J. and Doyle, J. L. (1990) Isolation of plant DNA from fresh tissue. Focus 12, 13-15.
  6. Ellsworth, D. L., Rittenouse, K. D. and Honeycutt, R. L. (1993) Artifactual variation in randomly amplified polymorphic DNA banding patterns. Bio Techniques 14, 214-217.
  7. Fujishiro, T. and Sasakuma, T. (1994) Variety identification and molecular characterization of newly bred line by RAPD marker in Brassica juncea. Breeding Science, (Suppl.) 1, 132.
  8. Gresshoff, P. M. and Caetano-Annolles, G. (1994) Staining nucleic acids with silver: an alternative to radioisotopic and fluorescent labeling. Promega Notes Magazine 45, 13.
  9. Hanboonsong, Y., Vinijsanun, T. and Ponragdee, W. (2000) Molecular characterization and genetic relationships of roselle germplasm in Thailand. pp. 95-106, Proceedings of the Final workshop on “Application of Biotechnology in the Improvement of Jute, Kenaf and Allied Fibres- Phase II,” (IJO/AGR/10), Beijing, China.
  10. Henry, R. J., Ko, H. L. and Weining, S. (1997) Identification of cereals using DNA-based technology. Cereal FW 42, 26-29.
  11. Hill, M., Witsenboer, H., Zabeau, M., Vos, P., Kesseli, R. and Michelmore, R. (1996) PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactua spp. Theor. Appl. Genet. 93, 1202-1210. https://doi.org/10.1007/BF00223451
  12. Howell, E. C., Newbury, H. J., Swennen, R. L., Withers, L. A. and Ford-Lloyd, B. V. (1994) The use of RAPD for identifying and classing Musa germplasm. Genome 37, 328-332. https://doi.org/10.1139/g94-045
  13. Hu, J. and Quiros, C. F. (1991) Identification of broccoli and cauliflower cultivars with RAPD markers. Plant Cell Rep. 10, 505-511.
  14. Janik, J. R., Schery, W., Woods, F. W. and Ruttan, V. W. (1974) Plant Science: An introduction to world crops, 2nd ed., p. 206, W.H. Freeman and Company, San Francisco, California, USA.
  15. Kaemmer, D., Afza, R., Weising, K., Kahl, G. and Novak, F. J.(1992) Oligonucleotide and amplification fingerprinting of wild species and cultivars of banana (Musa spp.) Biotechnology 10, 1030-1035. https://doi.org/10.1038/nbt0992-1030
  16. Keim, P., Schupp, J. M., Travis, S. E., Clayton, K., Zhu, T., Shi, L., Ferreira, A. and Webb, D. M. (1997) A high-density soybean genetic map based on AFLP markers. Crop Sci. 37, 537-543. https://doi.org/10.2135/cropsci1997.0011183X003700020038x
  17. Koller, B., Lehman, A., McDermott, J. M. and Gesseler, C. (1993) Identification of apple cultivars. Theor. Appl. Genet. 85, 901-904.
  18. Kresovich, S., Williams, J. G. K., McFerson, J. R., Routman, E. J. and Schaal, B. A. (1992) Characterization of genetic identities and relationships of Brassica oleracea L. via a random amplified polymorphic DNA assay. Theor. Appl. Genet. 85, 190-196.
  19. Lawson, W. R., Henry, R. J., Kochman, J. K. and Kong, G. A. (1994) Genetic diversity in sunflower (Helianthus annuus L.) as revealed by random amplified polymorphic DNA analysis. Aust. J. Agric. Res. 45, 1319-1327. https://doi.org/10.1071/AR9941319
  20. Lin, J. J., Kuo, J., Ma, J., Saunders, J. A., Bread, H. S., Macdonald, M. H., Kenworthy, W., Ude, G. N. and Mattews, B.F. (1996) Identification of molecular markers in soybean comparing RFLP, RAPD and AFLP DNA mapping techniques. Plant Mol. Biol. Reporter 14, 156-169. https://doi.org/10.1007/BF02684905
  21. Mace, E. S. and Lester, R. N. (1999) AFLP analysis of genetic relationships among the cultivated eggplant, Solanum melongena L., and wild relatives (Solanaceae). Theor. Appl. Genet. 99, 626-633. https://doi.org/10.1007/s001220051277
  22. Novy, R. G., Kobak, C., Goffreda and Vorsa, N. (1994) RAPDs identify varietal misclassification and regional divergence in cranberry (Vaccinium macrocarpon (Ait.) Pursh). Theor. Appl. Genet. 88, 1004-1010.
  23. Olivier, M., Meehl, M. A. and Lust, G. (1999) Random amplified polymorphic DNA (RAPD) sequence as marker for canine genetic studies. J. Hered. 90, 78-82. https://doi.org/10.1093/jhered/90.1.78
  24. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. V., Tingey, S. and Rafalski, A. (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsattelite) markers for germplasm analysis. Mol. Breeding 2, 225-238. https://doi.org/10.1007/BF00564200
  25. Powell, W., Thomas, W. T. B., Baird, E., Lawrence, P., Booth, A., Harrower, B., McNicol, J. W. and Waugh, R. (1997) Analysis of quantitative traits in barley by use of amplified fragment length polymorphisms. Heredity 79, 48-59. https://doi.org/10.1038/hdy.1997.122
  26. Quagliaro, G., Vischi, M., Tyrka, M. and Olivieri, A. M. (2001) Identification of wild and cultivated sunflower for breeding purpose by AFLP markers. J. Hered. 92, 38-42. https://doi.org/10.1093/jhered/92.1.38
  27. Skroch, P. and Nienhuis, J. (1995) Impact of scoring error and reproducibility of RAPD data on RAPD based estimates of genetic distance. Theor. Appl. Genet. 91, 1086-1091.
  28. StatSoft. (1994) STATISTICA Users Guide Version 4.1. p. 1064, Stat Soft Inc., Tulsa, U.K.
  29. Stiles, J. I., Lemme, C., Sondur, S., Morshidi, M. B. and Manshardt, R. (1993) Using randomly amplified polymorphic DNA for evaluating genetic relationships among papaya cultivars. Theor. Appl. Genet. 85, 697-701.
  30. Takeuchi, A. (1994) Identification of close related varieties in Niigata Pref. Based on DNA markers (in Japanese). Breeding Science 44 (Suppl. 1), 129.
  31. van Eck, H. J., van der Voort, J. R., Draaitra, J. R., van Zandvoort, P., van Enckevort, E., Seger, B., Peleman, J., Jacobsen, E., Helder, J. and Bakker, J. (1995) The inheritance of chromosomal localization of AFLP markers in non-inbred potato offspring. Mol. Breeding 1, 397-410. https://doi.org/10.1007/BF01248417
  32. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J. and Kuiper, M. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407-4414. https://doi.org/10.1093/nar/23.21.4407
  33. Vuylsteke, M., Mank, R., Antonise, R., Bastiaans, E., Senior, M. L., Stuber, C. W., Melchinger, A. E., Lubberstedt, T., Xia, X. C. and Stam, P. (1999) Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor. Appl. Genet. 99, 921-935. https://doi.org/10.1007/s001220051399
  34. Wilde, J., Waugh, R. and Powell, W. (1992) Genetic fingerprinting of Theobroma clones using randomly amplified polymorphic DNA markers. Theor. Appl. Genet. 83, 871-877.
  35. Wilkie, S. E., Issac, P. G. and Slater, R. J. (1993) Random amplified polymorphic DNA (RAPD) markers for genetic analysis in Allium. Theor. Appl. Genet. 86, 497-504. https://doi.org/10.1007/BF00838566
  36. Williams, J. G. K., Kubelik, A. K., Livac, K. J., Rafalski, J. A. and Tingey, S. V. (1990) DNA polymorphisms amplified by arbitary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531-6535. https://doi.org/10.1093/nar/18.22.6531
  37. Yang, X. and Quiros, C. F. (1993) Identification and classification of celery cultivars with RAPD markers. Theor. Appl. Genet. 86, 205-212.
  38. Yazaki, S., Kawata, M., Monma, B., Muraki, M., Miura, Y., Takaiwa, F., Shimamto, Y. and Ueda, S. (1994) Analysis of DNA polymorphisms among maize inbred lines by RAPDs. Breeding Science 44 (Suppl. 1): 130.
  39. Zhou, Z., Bebeli, P. J., Somers, D. J. and Gustafson, J. P. (1998) Analysis of DNA polymorphisms among Kenaf (Hibiscus cannabinus L.) varieties by RAPD (Random Amplified Polymorphic DNA). Mol. Breeding 8, 232-347.

Cited by

  1. Development of linkage map in F2 population of selected parents with respect toMacrophomina phaseolinaresistance trait using screened polymorphic RAPD and developed SCAR markers of jute vol.44, pp.7, 2011, https://doi.org/10.1080/03235400903308883
  2. Development of large-scale AFLP markers in jute vol.20, pp.2, 2011, https://doi.org/10.1007/s13562-011-0058-1
  3. A complete genetic linkage map and QTL analyses for bast fibre quality traits, yield and yield components in jute (Corchorus olitorius L.) vol.47, pp.3, 2013, https://doi.org/10.3103/S0095452713030092
  4. Evaluation of genetic diversity in jute (Corchorus species) using STMS, ISSR and RAPD markers vol.125, pp.3, 2006, https://doi.org/10.1111/j.1439-0523.2006.01208.x
  5. A preliminary genetic analysis of fibre traits and the use of new genomic SSRs for genetic diversity in jute vol.161, pp.3, 2008, https://doi.org/10.1007/s10681-007-9597-x
  6. Genetic assessment of eight Corchorus spp. (Tiliaceae) using RAPD and ISSR markers vol.56, pp.1, 2013, https://doi.org/10.1007/s13237-013-0076-6
  7. SSR and RAPID Profile Based Grouping of Selected Jute Germplasm with Respect to Fibre Fineness Trait vol.17, pp.1, 2008, https://doi.org/10.1007/BF03263256