DOI QR코드

DOI QR Code

Characterization of a Salicylic Acid- and Pathogen-induced Lipase-like Gene in Chinese Cabbage

  • Lee, Kyung-Ah (Division of Life Sciences, College of Natural Sciences, Chungbuk National University) ;
  • Cho, Tae-Ju (Division of Life Sciences, College of Natural Sciences, Chungbuk National University)
  • 투고 : 2003.02.10
  • 심사 : 2003.03.11
  • 발행 : 2003.09.30

초록

A cDNA clone for a salicylic acid-induced gene in Chinese cabbage (Brassica rapa subsp. pekinensis) was isolated and characterized. The cabbage gene, designated Br-sil1 (for $\underline{B}$rassica $\underline{r}$apa $\underline{s}$alicylate-$\underline{i}$nduced $\underline{l}$lipase-like 1 gene), encodes a putative lipase that has the family II lipase motif GDSxxDxG around the active site serine. A database search showed that plant genomes have a large number of genes that contain the family II lipase motif. The lipase-like proteins include a myrosinase-associated protein, an anther-specific proline-rich protein APG, a pollen coat protein EXL, and an early nodule-specific protein. The Br-sil1 gene is strongly induced by salicylic acid and a non-host pathogen, Pseudomonas syringae pv. tomato, that elicits a hypersensitive response in Chinese cabbage. Treatment of the cabbage leaves with BTH, methyl jasmonate, or ethephon showed that the Br-sil1 gene expression is induced by BTH, but not by methyl jasmonate or ethylene. This indicates that the cabbage gene is activated via a salicylic acid-dependent signaling pathway. An examination of the tissue-specific expression revealed that the induction of the Br-sil1 gene expression by BTH occurs in leaves and stems, but not in roots and flowers. Without the BTH treatment, however, the Br-sil1 gene is not expressed in any of the tissues that were examined.

키워드

참고문헌

  1. Bak, S., Nielsen, H. L. and Halkier, B. A. (1998) The presence of CYP79 homologues in glucosinolate-producing plants shows evolutionary conservation of the enzymes in the conversion of amino acid to aldoxime in the biosynthesis of cyanogenic glucosides and glucosinolates. Plant Mol. Biol. 38, 725-734. https://doi.org/10.1023/A:1006064202774
  2. Bashan, Y., Sharon, E., Okon, Y. and Henis, Y. (1981) Scanning electron and light microscopy of infection and symptom development in tomato leaves infected with Pseudomonas tomato. Physiol. Plant Pathol. 19, 139-144. https://doi.org/10.1016/S0048-4059(81)80016-1
  3. Bent, A. F. (1996) Plant disease resistance genes: Function meets structure. Plant Cell 8, 1757-1771. https://doi.org/10.1105/tpc.8.10.1757
  4. Bertinetti, C. and Ugalde, R. A. (1996) Studies on the response of carrot cells to a Sclerotinia sclerotiorum elicitor: induction of the expression of an extracellular glycoprotein mRNA. Mol. Plant Microbe Interact. 9, 658-663. https://doi.org/10.1094/MPMI-9-0658
  5. Brick, D. J., Brumlik, M. J., Buckley, J. T., Cao, J. -X., Davies, P. C., Misra, S., Tranbarger, T. J. and Upton, C. (1995) A new family of lipolytic plant enzymes with members in rice, arabidopsis and maize. FEBS Lett. 377, 475-480. https://doi.org/10.1016/0014-5793(95)01405-5
  6. Chu, H. -S. and Cho, T. -J. (1996) Isolation of salicylic acidinduced genes in Brassica napus by subtractive hybridization. Mol. Cells 6, 766-772.
  7. Dangl, J. L. and Jones, J. D. (2001) Plant pathogens and integrated defense responses to infection. Nature 411, 826-833. https://doi.org/10.1038/35081161
  8. De Vries, S., Hoge, H. and Bisseling, T. (1988) Isolation of total and polysomal RNA from plant tissues; in Plant Molecular Biology, Gelvin, S. B. and Schilperoot, R. A. (eds), pp. B6/1-5, Kluwer Academic Publishers, Dordrecht, The Netherlands.
  9. Delaney, T. P. (1997) Genetic dissection of acquired resistance to disease. Plant Physiol. 113, 5-12. https://doi.org/10.1104/pp.113.1.5
  10. Dickstein, R., Prusty, R., Peng, T., Ngo, W. and Smith, M. E. (1993) ENOD8, a novel early nodule-specific gene, is expressed in empty alfalfa nodules. Mol. Plant Microbe Interact. 6, 715-721. https://doi.org/10.1094/MPMI-6-715
  11. Emanuelsson, O., Nielsen, H., Brunak, S. and von Heijne, G. (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005-1016. https://doi.org/10.1006/jmbi.2000.3903
  12. Falk, A., Feys, B. J., Frost, L. N., Jones, J. D. G. and Daniels, M. J. (1999) EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc. Natl. Acad. Sci. USA 96, 3292-3297. https://doi.org/10.1073/pnas.96.6.3292
  13. Feys, B. and Parker, J. E. (2000) Interplay of signaling pathways in plant disease resistance. Trends Genet. 16, 449-455. https://doi.org/10.1016/S0168-9525(00)02107-7
  14. Goerlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K.-H., Oostendorp, M., Staub, T., Ward, E., Kessmann, H. and Ryals, J. (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8, 629-643. https://doi.org/10.1105/tpc.8.4.629
  15. Hanfrey, C., Fife, M. and Buchanan-Wollaston, V. (1996) Leaf senescence in Brassica napus: Expression of genes encoding pathogenesis-related proteins. Plant Mol. Biol. 30, 597-609. https://doi.org/10.1007/BF00049334
  16. Hilton, S. and Buckley, J. T. (1991) Studies on the reaction mechanism of a microbial lipase/acyltransferase using chemical modification and site-directed mutagenesis. J. Biol. Chem. 266, 997-1000.
  17. Jirage, D., Tootle, T. L., Reuber, T. L., Frost, L. N., Feys, B. J., Parker, J. E. and Ausubel, F. M. (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc. Natl. Acad. Sci. USA 96, 13583-13588. https://doi.org/10.1073/pnas.96.23.13583
  18. Kandzia, R., Grimm, R., Eckerskorn, C., Lindemann, P. and Luckner, M. (1998) Purification and characterization of lanatoside 15-O-acetylesterase from Digitalis lanata Ehrh. Planta 204, 383-389. https://doi.org/10.1007/s004250050270
  19. Kim, M., Lim, C.-J. and Kim, D. (2002) Transcription of Schizosaccharomyces pombe thioltransferase-1 in response to stress conditions. J. Biochem. Mol. Biol. 35, 409-413. https://doi.org/10.5483/BMBRep.2002.35.4.409
  20. Mayfield, J. A., Fiebig, A., Jhonstone, S. E. and Preuss, D. (2001) Gene families from the Arabidopsis thaliana pollen coat proteome. Science 292, 2482-2485. https://doi.org/10.1126/science.1060972
  21. McConn, M., Creelman, R. A., Bell, E., Mullet, J. E. and Browse, J. (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc. Natl Acad. Sci. USA 94, 5473-5477. https://doi.org/10.1073/pnas.94.10.5473
  22. McDowell, J. M. and Dangl, J. L. (2000) Signal transduction in the plant immune response. Trends Biochem. Sci. 25, 79-82. https://doi.org/10.1016/S0968-0004(99)01532-7
  23. Min, H. -J., Park, S. -S. and Cho, T. -J. (2001) A simple and efficient subtractive cloning method. J. Biochem. Mol. Biol. 34, 59-65.
  24. Newman, M. A., Conrads-Strauch, J., Scofield, G., Daniels, M. J. and Dow, J. M. (1994) Defense-related gene induction in Brassica campestris in response to defined mutants of Xanthomonas campestris with altered pathogenicity. Mol. Plant Microbe Interact. 7, 553-563. https://doi.org/10.1094/MPMI-7-0553
  25. Newman, M. A., Daniels, M. J. and Dow, J. M. (1995) Lipopolysaccharide from Xanthomonas campestris induces defense-related gene expression in Brassica campestris. Mol. Plant Microbe Interact. 8, 778-780. https://doi.org/10.1094/MPMI-8-0778
  26. Nielsen, H., Engelbrecht, J., Brunak, S. and von Heijne, G. (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1-6. https://doi.org/10.1093/protein/10.1.1
  27. Nuernberger, T. and Scheel, D. (2001) Signal transmission in the plant immune response. Trends Plant Sci. 6, 372-379. https://doi.org/10.1016/S1360-1385(01)02019-2
  28. O’Donnell, P. J., Calvert, C., Atzorn, R., Wastemack, C., Leyser, H. M. O. and Bowles, D. J. (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274, 1914-1917. https://doi.org/10.1126/science.274.5294.1914
  29. Page, R. D. (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357-358.
  30. Pieterse, C. M. J. and van Loon, L. C. (1999) Salicylic acidindependent plant defense pathways. Trends Plant Sci. 4, 52-58. https://doi.org/10.1016/S1360-1385(98)01364-8
  31. Roberts, M. R., Foster, G. D., Blundell, R. P., Robinson, S. W., Kumar, A., Draper, J. and Scott, R. (1993) Gametophytic and sporophytic expression of an anther-specific Arabidopsis thaliana gene. Plant J. 3, 111-120. https://doi.org/10.1111/j.1365-313X.1993.tb00014.x
  32. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. (1996) Systemic acquired resistance. Plant Cell 8, 1809-1819. https://doi.org/10.1105/tpc.8.10.1809
  33. Ryang, S. -H., Chung, S. -Y., Lee, S. -H., Cha, J. -S., Kim, H. Y. and Cho, T. -J. (2002) Isolation of pathogen-induced Chinese cabbage genes by subtractive hybridization employing selective adaptor ligation. Biochem. Biophys. Res. Commun. 299, 352-359. https://doi.org/10.1016/S0006-291X(02)02639-6
  34. Shinoda, S., Matsuoka, H., Tsuchie, T., Miyoshi, S., Yamamoto, S., Taniguchi, H. and Mizuguchi, Y. (1991) Purification and characterization of a lecithin-dependent haemolysin from Escherichia coli transformed by a Vibrio parahaemolyticus gene. J. Gen. Microbiol. 137, 2705-2711. https://doi.org/10.1099/00221287-137-12-2705
  35. Taipalenssu, J., Falk, A. and Rask, L. (1996) A wound- and methyl jasmonate-inducible transcript coding for a myrosinaseassociated protein with similarities to an early nodulin. Plant Physiol. 110, 483-491. https://doi.org/10.1104/pp.110.2.483
  36. Taipalensuu, J., Andersson, E., Eriksson, S. and Rask, L. (1997) Regulation of the wound-induced myrosinase-associated protein transcript in Brassica napus plants. Eur. J. Biochem. 247, 963-971. https://doi.org/10.1111/j.1432-1033.1997.00963.x
  37. Takasaki, T., Hatakeyama, K., Suzuki, G., Watanabe, M., Isogai, A. and Hinata, K. (2000) The S receptor kinase determines self-incompatibility in Brassica stigma. Nature 403, 913-916. https://doi.org/10.1038/35002628
  38. Thangstad, O. P., Winge, P., Husebye, H. and Bones, A. (1993) The myrosinase (thioglucoside glucohydrolase) gene family in Brassicaceae. Plant Mol. Biol. 23, 511-524. https://doi.org/10.1007/BF00019299
  39. Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  40. Upton, C. and Buckley, J. T. (1995) A new family of lipolytic enzymes? Trends Biochem. Sci. 20, 178-179. https://doi.org/10.1016/S0968-0004(00)89002-7
  41. Whalen, M. C., Innes, R. W., Bent, A. F. and Staskawicz, B. J. (1991) Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3, 49-59. https://doi.org/10.1105/tpc.3.1.49
  42. Wu, Y., Qui, X., Du, S. and Erickson, L. (1996) Cloning and characterization of PO22, a pollen-expressed gene in alfalfa. Plant Mol. Biol. 32, 1205-1207. https://doi.org/10.1007/BF00041407

피인용 문헌

  1. Acibenzolar-S-methyl induces resistance in oilseed rape (Brassica napus L.) against branched broomrape (Orobanche ramosa L.) vol.28, pp.1, 2009, https://doi.org/10.1016/j.cropro.2008.08.014
  2. ISOLATION AND CHARACTERIZATION OF ICE STRUCTURING PROTEINS FROM COLD-ACCLIMATED WINTER WHEAT GRASS EXTRACT FOR RECRYSTALLIZATION INHIBITION IN FROZEN FOODS vol.31, pp.2, 2007, https://doi.org/10.1111/j.1745-4514.2007.00112.x
  3. Detection of Mycobacterium tuberculosis and Mycobacterium bovis in Sahiwal cattle from an organized farm using ante-mortem techniques vol.9, pp.4, 2016, https://doi.org/10.14202/vetworld.2016.383-387
  4. Lipid deacylating enzymes in plants: Old activities, new genes vol.47, pp.6, 2009, https://doi.org/10.1016/j.plaphy.2009.02.011
  5. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis vol.13, pp.1, 2012, https://doi.org/10.1186/1471-2164-13-309
  6. The taxon-specific paralogs of grapevine PRLIP genes are highly induced upon powdery mildew infection vol.169, pp.17, 2012, https://doi.org/10.1016/j.jplph.2012.07.010
  7. Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants vol.29, pp.10, 2006, https://doi.org/10.1111/j.1365-3040.2006.01565.x
  8. An insight into plant lipase research – challenges encountered vol.95, 2014, https://doi.org/10.1016/j.pep.2013.11.006
  9. Phloem Proteomics Reveals New Lipid-Binding Proteins with a Putative Role in Lipid-Mediated Signaling vol.7, 2016, https://doi.org/10.3389/fpls.2016.00563
  10. Combining Comparative Sequence and Genomic Data to Ascertain Phylogenetic Relationships and Explore the Evolution of the Large GDSL-Lipase Family in Land Plants vol.28, pp.1, 2011, https://doi.org/10.1093/molbev/msq226
  11. GER1,a GDSL Motif-Encoding Gene from Rice is a Novel Early Light- and Jasmonate-Induced Gene vol.9, pp.1, 2007, https://doi.org/10.1055/s-2006-924561
  12. Isolation and characterization of methyl jasmonate‐inducible genes in chinese cabbage vol.7, pp.4, 2003, https://doi.org/10.1080/12265071.2003.9647725
  13. Purification and cloning of an esterase from the weed black-grass (Alopecurus myosuroides), which bioactivates aryloxyphenoxypropionate herbicides vol.39, pp.6, 2004, https://doi.org/10.1111/j.1365-313X.2004.02174.x
  14. Transcriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response vol.14, pp.1, 2013, https://doi.org/10.1186/1471-2164-14-515
  15. Identification and validation of a novel major QTL for all-stage stripe rust resistance on 1BL in the winter wheat line 20828 pp.1432-2242, 2019, https://doi.org/10.1007/s00122-019-03283-7