DOI QR코드

DOI QR Code

Isolation and Identification of an Antioxidant Enzyme Catalase Stimulatory Compound from Garnoderma lucidum

  • Lee, Hyeon-Yong (Division of Food and Biotechnology, Kangwon National University) ;
  • Eum, Won-Sik (Division of Life Sciences, Hallym University) ;
  • Kim, Dae-Won (Division of Life Sciences, Hallym University) ;
  • Lee, Byung-Ryong (Division of Life Sciences, Hallym University) ;
  • Yoon, Chang-Sik (Division of Life Sciences, Hallym University) ;
  • Jang, Sang-Ho (Division of Life Sciences, Hallym University) ;
  • Choi, Hee-Soon (Division of Life Sciences, Hallym University) ;
  • Choi, Soo-Hyun (Division of Life Sciences, Hallym University) ;
  • Baek, Nam-In (Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University) ;
  • Kang, Jung-Hoon (Department of Genetic Engineering, Chongju University) ;
  • Kang, Tae-Cheon (Department of Anatomy, College of Medicine, Hallym University) ;
  • Won, Moo-Ho (Department of Anatomy, College of Medicine, Hallym University) ;
  • Cho, Sung-Woo (Department of Biochemistry, University of Ulsan College of Medicine) ;
  • Lee, Kil-Soo (Division of Life Sciences, Hallym University) ;
  • Park, Jin-Seu (Division of Life Sciences, Hallym University) ;
  • Choi, Soo-Young (Division of Life Sciences, Hallym University)
  • Received : 2003.02.27
  • Accepted : 2003.03.12
  • Published : 2003.09.30

Abstract

Antioxidant enzymes are scavenger reactive-oxygen intermediates and are involved in many cellular defense systems. We previously reported that a crude extract of Garnoderma lucidum, a medicinally potent mushroom, profoundly increased the catalase gene expression and enzyme activities in mouse livers (Park et al., J. Biochem. Mol. Biol. 34. 144-149, 2001). In this study, we elucidated the detailed mechanism whereby G. lucidum stimulates the catalase activity and expression. The major active fraction was isolated from G. lucidum and methyl linoleate was considered the most major component of the fraction. In order to determine whether methyl linoleate increases mRNA and protein synthesis of catalase, Northern and Western blot analyses were performed in vivo with methyl linoleate-treated mouse liver homogenate after feeding methyl linoleate to the mice. Northern and Western blot analyses of the crude liver homogenates in the mice that were administered methyl linoleate revealed that the expression catalase was significantly increased when compared to the untreated controls. In addition, the catalase protein levels and enzymatic activities increased in the mouse liver homogenates. These results suggest that methyl linoleate that is produced by G. lucidum stimulates the catalase expression at the transcription level.

Keywords

References

  1. Aebi, H. E. and Wyss, S. R. (1978) Acatalasemia; in The Metabolic Basis of Inherited Disease, Stanbury, J. B., Wyngaarden, J. B. and Fredricson, D. S. (eds) pp. 1792-1807, McGraw-Hill Publications, New York, USA.
  2. Agar, N. S., Sadrzadeh, S. M., Hallay, P. E. and Eaton, J. W. (1986) Erythrocyte catalase. A somatic oxidant defense? J. Clin. Invest. 77, 319-321. https://doi.org/10.1172/JCI112294
  3. Bao, X. F., Zhen, Y., Ruan, L. and Fang, J. N. (2002) Purification, characterization and modification of T-lymphocyte-stimulating polysaccharide from spores of Ganoderma luccidum. Chem. Pharm. Bull. 50, 623-629. https://doi.org/10.1248/cpb.50.623
  4. Bradford, M. A. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Chance, B., Sies, H. and Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527-604.
  6. Choi, K. S., Lee, B. R., Sun, H. J., Kwon, H. Y., Park, J., Lee, K. S., Cho, J. H. and Choi, S. Y. (1999) Ginsenosides activate the catalase from bovine brain. Kor. J. Gerontol. 9, 1-6.
  7. Cohen, G., Dembiec, D. and Marcus, J. (1970) Measurement of catalase activity in tissues extracts. Anal. Biochem. 34, 30-38. https://doi.org/10.1016/0003-2697(70)90083-7
  8. Dawson, J. H. (1988) Probing structure-function relation in hemecontaining oxigenases and peroxidases. Science 240, 433-439. https://doi.org/10.1126/science.3358128
  9. Desisseroth, A and Dounce, A. L. (1970) Catalase: Physical and chemical properties, mechanism of catalysis, and physiological roles. Physiol. Rev. 50, 319-375.
  10. El-Mekkawy, S., Meselhy, M. R., Nakamura, N., Tezuka, Y., Hattori, M., Kakiuchi, N., Shimotohno, K., Kawahata, T. and Otake, T. (1998) Anti-HIV-1 and anti-HIV-1-protease substances from Garnoderma lucidum. Phytochemistry 49, 1651-1657. https://doi.org/10.1016/S0031-9422(98)00254-4
  11. Eo, S. K., Kim, Y. S., Lee, C. K. and Han, S. S. (2000) Possible mode of antiviral activity of acidic protein bound polysaccharide isolated from Ganoderma lucidum on herpes simplex viruses. J. Ethnopharmacol. 72, 475-481. https://doi.org/10.1016/S0378-8741(00)00266-X
  12. Fita, I. and Rossmann, M. G. (1985) The active center of catalase. J. Mol. Biol. 185, 21-37. https://doi.org/10.1016/0022-2836(85)90180-9
  13. Ikeda-Saito, M., Argade, P. V. and Rousseau, D. L. (1985) Resonance raman evidence of chloride binding to the heme iron in myeloperoxidase. FEBS Lett. 184, 52-55. https://doi.org/10.1016/0014-5793(85)80651-7
  14. Jin, L. H., Kim, D. W., Eum, W. S., Yoon, C. S., Lee, B. R., Jang, S. H., Choi, H. S., Choi, S. H., Kim, Y. H., Kim, S. Y., Kang, T. C., Won, M. H., Lee, H. Y., Kang, J. H., Kwon, O-S., Cho, S-W., Lee, K. S., Park, J. and Choi, S. Y. (2003) Human liver catalase molecular gene cloning, expression and characterization of monoclonal antibodies. Mol. Cells, In press.
  15. Jones, G. M., Sanford, K. K., Parshad, R., Gantt, R., Price, F. M. and Tarone, R. E. (1985) Influence of added catalase on chromosome stability and neoplastic transformation of mouse cells in culture. Br. J. Cancer 52, 583-590. https://doi.org/10.1038/bjc.1985.230
  16. Kang, J. X. and Leaf, A. (1994) Effects of long-chain polyunsaturated fatty acids on the contraction of neonatal rat cardiac myocytes. Proc. Natl. Acad. Sci. USA 91, 9886-9890. https://doi.org/10.1073/pnas.91.21.9886
  17. Kim, C. H., Park, Y. S., Chung, K. N. and Elwood, P. C. (2002a) Sorting and function of the human folate receptor is independent of the caveolin expression in fisher rat thyroid epithelial cells. J. Biochem. Mol. Biol. 35, 395-402. https://doi.org/10.5483/BMBRep.2002.35.4.395
  18. Kim, S. Y., Kim, E. J. and Park, J. W. (2002b) control of singlet oxygen-induced oxidative damage in Escherichia coli. J. Biochem. Mol. Biol. 35, 353-357 https://doi.org/10.5483/BMBRep.2002.35.4.353
  19. Lewis, W. (1985) Establishment of mouse cells lines homozygous for temperature-sensitive mutation in catalastic gene. Somatic Cell Mol. Genet. 11, 319-324. https://doi.org/10.1007/BF01534408
  20. Lin, J. M., Lin, C. C., Chen, M. F., Ujiie, T. and Takada, A. (1995) Radical scavenger and antihepatotoxic activity of Garnoderma formosanum, Garnoderma lucidum and Garnoderma neo-japonicum. J. Ethopharmacol. 47, 33-41. https://doi.org/10.1016/0378-8741(95)01251-8
  21. Lin, J. M., Lin, C. C., Chiu, H. F., Yang, J. J. and Lee, S. C. (1993) Evaluation of the anti-inflammatory and liver-protective effects of anoectochilus formosanus, garnoderma lucidum and gynostemma pentaphyllum in rats. Am. J. Chin. Med. 21, 59-69. https://doi.org/10.1142/S0192415X9300008X
  22. Moreno, M. C. M., Olivares D. M., Lopez, F. J., Adelantado, J. V. and Reig, F. B. (1999) Analytical evaluation of polyunsaturated fatty acids degradation during thermal oxidation of edible oils by Fourier transform infrared spectroscopy. Talanta. 50, 269-275. https://doi.org/10.1016/S0039-9140(99)00034-X
  23. Park, J., Lee B. R., Jin L. H., Kim, C. K., Choi, K. S., Bahn, J. H., Lee, K. S., Kwon, H. Y., Chang, H. W., Baek, N. I., Lee, E. H., Kang, J. H., Cho, S. W and Choi, S. Y. (2001) The stimulatory effects of Garnoderma lucidum and Phellinus linteus on the antioxidant enzyme catalase. J. Biochem. Mol. Biol. 34, 144-149.
  24. Shaffer, J. B., Sutton, R. B. and Bewley, G. C. (1987) Isolation of cDNA clone for murine catalase and analysis of an acatalasemic mutant. J. Biol. Chem. 262, 12908-12911.
  25. Spindler, S. A., Clark, K. S,, Callewaert, D. M., and Reddy, R. G. (1996) Significance and immunoassay of 9- and 13-hydroxyoctadecadienoic acids. Biochem. Biophys. Res. Commun. 218, 187-191. https://doi.org/10.1006/bbrc.1996.0033
  26. Towbin, H., Staehelin, T. and Gardon, T. (1979) Electrophoretic transfer of proteins from polysaccharide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350-4354. https://doi.org/10.1073/pnas.76.9.4350
  27. Wang, S. Y., Hsu, M. L., Hsu, H. C., Tzeng, C. H., Lee, S. S., Shiao, M. S. and Ho, C. K. (1997) The anti-tumor effect of Garnoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int. J. Cancer 70, 699-705.
  28. Yoon, S. Y., Eo, S. K., Kim, Y. S., Lee, C. K. and Han, S. S. (1994) Antimicrobial activity of Garnoderma lucidum extracts alone and in combination with some antibiotics. Arch. Pharm. Res. 17, 438-442. https://doi.org/10.1007/BF02979122

Cited by

  1. Organic acid and quality change in Flammulina velutipes fruit body by various storage temperature treatments and packaging films application vol.13, pp.2, 2015, https://doi.org/10.14480/JM.2015.13.2.119
  2. Phenolic Content of Hypodaphnis Zenkeri and Its Antioxidant Effects against Fenton Reactions’ Mediated Oxidative Injuries on Liver Homogenate vol.3, pp.4, 2014, https://doi.org/10.3390/antiox3040866
  3. Anti-rheumatoid and anti-oxidant activity of homeopathic Guaiacum officinale in an animal model vol.103, pp.2, 2014, https://doi.org/10.1016/j.homp.2013.08.006