DOI QR코드

DOI QR Code

Bacterial Expression of the scFv Fragment of a Recombinant Antibody Specific for Burkholderia pseudomallei Exotoxin

  • Su, Yu-Ching (Centre for Gene Analysis and Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Lim, Kue-Peng (Centre for Gene Analysis and Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Nathan, Sheila (Centre for Gene Analysis and Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
  • Received : 2003.03.18
  • Accepted : 2003.04.24
  • Published : 2003.09.30

Abstract

The scFv antibody towards the Burkholderia pseudomallei exotoxin was previously constructed by phage display and exhibited good specificity towards the exotoxin. We report here the optimization of the scFv expression in an E. coli expression system. Four different E. coli strains (ER2537, TG1, HB2151, and XL1-Blue) were examined for optimal expression of the scFv protein. Two types of carbon source (i.e. 0.2% glucose and 0.2% glycerol) were also tested for their ability to induce the scFv expression. Cells that carried the scFv construct were grown at $30^{\circ}C$ and induced with 0.05 mM IPTG. The expression was then monitored by SDS-PAGE, Western blotting, and indirect ELISA. The Western blot profile showed different levels of the scFv expression among the host strains; XL1-Blue exhibited the highest level of the scFv protein expression. Glycerol at a concentration of 0.2% (v/v) significantly increased the scFv protein expression level when compared to 0.2% (w/v) glucose. Further optimization demonstrated that the scFv protein expression in XL1-Blue was the most optimal with a glycerol concentration as low as 0.05%. However, by indirect ELISA, only the scFv protein that was expressed in 0.2% (v/v) glycerol exhibited high specificity towards the Burkholderia pseudomallei exotoxin.

Keywords

References

  1. Armstrong, N., Adey, N. B., McConnel, S. J. and Kay, B. K. (1995) Vectors for phage display; in Phage Display of Peptides and Proteins, Kay, B. K., Winter, J. and McCatterty, J. (eds.), pp. 38-54, Academic Press, San Diego, USA.
  2. Andris-Widhopf, J., Rader, C., Steinberger P., Fuller, R. and Barbas, C. F. III. (2000) Methods for the generation of chicken monoclonal antibody fragments by phage display. J. Immunol. Methods. 242, 159-181. https://doi.org/10.1016/S0022-1759(00)00221-0
  3. Ashdown, L. R. and Koehler, J. M. (1990) Production of hemolysin and other extracellular enzymes by clinical isolates of Burkholderia pseudomallei. J. Clin. Microbiol. 28, 2331-2334.
  4. Barbas III, C. F., Burton, D. R., Scott, J. K. and Silverman, G. J. (2001) Phage Display: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, USA.
  5. Carrier, M. J., Nugent, M. E., Tacon, W. C. A. and Primrose, S. B. (1993) High expression of cloned genes in E. coli. and its consequences. Trends Biotechnol. 1, 109-113.
  6. Chaowagul, W., Suputtamongkol, Y., Dance, D. A. B., Rajchanuvong, A., Pattararechachai, J. and White, N. J. (1993) Relapse in melioidosis: incidence and risk factors. J. Infect. Dis. 168, 1181-1185. https://doi.org/10.1093/infdis/168.5.1181
  7. De Bellis, D. and Schwartz, Ira. (1990) Regulated expression of foreign genes fused to lac: control by glucose levels in growth medium. Nucleic Acids Res. 18, 1311. https://doi.org/10.1093/nar/18.5.1311
  8. Donovan, R. S., Robinson, C. W. and Glick, B. R. (2000) Optimizing the expression of a monoclonal antibody fragment under the transcriptional control of the Escherichia coli lac promoter. Canadian J. Microbiol. 46, 532-541. https://doi.org/10.1139/cjm-46-6-532
  9. George, A. J. T. (1995) Production of antibodies using phage display libraries; in Monoclonal Antibodies: Production, engineering and clinical application, Ritter, M. A. and Ladyman, H. M. (eds.). pp. 142-165, Cambridge University Press, Cambridge, Great Britain.
  10. Glick, B. R. (1995) Metabolic load and heterologous gene expression. Biotechnol. Adv. 13, 247-261. https://doi.org/10.1016/0734-9750(95)00004-A
  11. Hausesler, S., Nimtz, M., Domke, T., Wray, V. and Steinmetz, I. (1998) Purification and characterisation of a cytotoxic exolipid of Burkholderia pseudomallei. Infect. Immunol. 66, 1588-1593.
  12. Ismail, G., Noor Embi, M., Omar, O., Allen, J. C. and Smith, C. J. (1987a) A comparative immnunosorbent assay for detection of Pseudomonas pseudomallei exotoxin. J. Med. Microbiol. 23, 353-357. https://doi.org/10.1099/00222615-23-4-353
  13. Ismail, G., Noor Embi, M., Omar, O., Razak, N., Allen, J. C. and Smith, C. J. (1987b) Enzyme immunoassay for the detection of antibody to Pseudomonas pseudomallei exotoxin in mice. FEMS Microbiol. Lett. 40, 27-31. https://doi.org/10.1111/j.1574-6968.1987.tb01976.x
  14. Ismail, G., Rahmah, M., Rohaya, S., Sharifah, H. S. M. and Noor Embi, M. (1991) Antibody to Pseudomonas pseudomallei exotoxin in sheep exposed to natural infection. Vet. Microbiol. 27, 277-282. https://doi.org/10.1016/0378-1135(91)90154-8
  15. Kanai, K. and Kondo, E. (1994) Recent advances in biomedical sciences of Burkholderia pseudomallei (basonym: Pseudomonas pseudomallei). Jpn. J. Med. Sci. Biol. 47, 1-45. https://doi.org/10.7883/yoken1952.47.1
  16. Karu, A. E., Bell, C. W. and Chin, T. E. (1995) Recombinant Antibody Technology. ILAR J. 37.
  17. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-685. https://doi.org/10.1038/227680a0
  18. Lin, E. E. C. (1987) Dissimilatory pathways for sugars, polyols and carboxylates; in Escherichia coli and Salmonella typhimurium: Cells and Molecular Biology, Ingraham, J. L., Low, K. B., Megasanik, B., Schaecther, M. and Umbarger, H. E. (eds.). pp. 244-284, American Society of Microbiology, Washington D. C., USA.
  19. Ling, J. M. L., Nathan, S., Lee, K. H. and Mohamed, R. (2001) Purification and Characterization of a Burkholderia pseudomallei Protease Expressed in Recombinant E. coli. J. Biochem. Mol. Biol. 34, 509-516.
  20. Nathan, S., Li, H. B., Rahmah, M. and Noor Embi, M. (2002) Phage display of recombinant antibodies toward Burkholderia pseudomallei exotoxin. J. Biochem. Mol. Biol. Biophys. 6, 45-53. https://doi.org/10.1080/10258140290010232
  21. Nathan, S., Rahmah, M., Pillai, R., Lai, K. Y. and Noor Embi, M. (2000) Production and characterisation of anti-Burkholderia pseudomallei exotoxin monoclonal antibodies. J. Biochem. Mol. Biol. Biophys. 4, 17-25.
  22. Puthucheary, S. D. (1994) Laboratory diagnosis of melioidosis; in International Symposium on Melioidosis: Prevailing Problems and Future Directions, Puthucheary, S. D. (ed.), pp. 250-252, Kuala Lumpur, Malaysia.
  23. Rader, C. and Barbas, C. F. III. (1997) Phage display of combinatorial antibody libraries. Curr. Opin. Biotechnol. 8, 503-508. https://doi.org/10.1016/S0958-1669(97)80075-4
  24. Rahmah, M., Nathan, S., Noor, E., Nyonya, R. and Ghazali, I. (1989) Inhibition of macromolecular synthesis in cultured macrophages by Pseudomonas pseudomallei exotoxin. Microbiol. Immunol. 33, 811-820. https://doi.org/10.1111/j.1348-0421.1989.tb00967.x
  25. Roche Molecular Chemicals. (1999) Anti-[HA]-Peroxidase mouse monoclonal antibody clone 12CA5. Roche Mol. Chem. Newslett. 1, 1-5.
  26. Thibault, F., Cociancich. S, Paucod, J. C., Gignoux, F., Thibault, I. and Vidal, D. (1996) Purification of a 42,000 mol. wt protease from Burkholderia pseudomallei. Toxicon 34, 1096.
  27. Towbin, H., Staehlin, T. and Gordon, J. (1979) Electrophoretic transfer of proteins from poliacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350-4354. https://doi.org/10.1073/pnas.76.9.4350
  28. Vorachit, M., Lam, K., Jayanetra, P. and Costerton, J. W. (1995) Electron microscopy study of the mode of growth of Pseudomonas pseudomallei in vitro and in vivo. J. Trop. Med. Hygiene. 98, 544-546.
  29. Yabuuchi, E. and Arakawa, M. (1993) Burkholderia pseudomallei and melioidosis: Be aware in temperate area. Microbiol. Immunol. 37, 823-836. https://doi.org/10.1111/j.1348-0421.1993.tb01712.x

Cited by

  1. Single-chain variable fragments antibody specific to Corynespora cassiicola toxin, cassiicolin, reduces necrotic lesion formation in Hevea brasiliensis vol.75, pp.1, 2009, https://doi.org/10.1007/s10327-008-0137-x
  2. Enhanced Production of Functional Extracellular Single Chain Variable Fragment Against HIV-1 Matrix Protein fromEscherichia coliby Sequential Simplex Optimization vol.45, pp.1, 2015, https://doi.org/10.1080/10826068.2014.887580
  3. Construction of an antimyoglobin single-chain variable fragment with rapid reaction kinetics vol.63, pp.1, 2016, https://doi.org/10.1002/bab.1349