DOI QR코드

DOI QR Code

Identification of Two Isoforms of Aminopeptidase N in Aedes aegypti Larval Midgut

  • Received : 2003.02.06
  • Accepted : 2003.03.18
  • Published : 2003.09.30

Abstract

The bacterium Bacillus thuringiensis produces toxin inclusions that are deleterious to target insect larvae. These toxins are believed to interact with a specific receptor protein(s) that is present on the gut epithelial cells of the larvae. In various insect species (in particular those belonging to the lepidopteran class), aminopeptidase N (APN) is one of the two receptor proteins that are considered to be involved in toxin-receptor interactions. However, in mosquitoes, the nature and identity of the receptor protein is unknown. Here, using RT-PCR, we identified two isoforms of the APN transcripts in the Aedes aegypti mosquito larval midgut. These results are congruent with a previous report of multiple isoforms of the APN gene expression in lepidopteran larvae. Which of the two isoforms (or other yet unidentified receptor proteins) is involved in the killing of mosquito larvae remains to be elucidated.

Keywords

References

  1. Ackermann, U. and Graf, R. (1998) Nucleotide sequence and deduced amino acid sequence of a putative asparagine synthetase in the mosquito Aedes aegypti. Biochim. Biophys. Acta 1383, 179-182. https://doi.org/10.1016/S0167-4838(98)00008-9
  2. Agrawal, N., Malhotra, P. and Bhatnagar, R. K. (2002) Interaction of gene-cloned and insect cell-expressed aminopeptidase N of Spodoptera litura with insecticidal crystal protein Cry1C. Appl. Environ. Microbiol. 68, 4583-4592. https://doi.org/10.1128/AEM.68.9.4583-4592.2002
  3. Becker, N. (1998) The use of Bacillus thuringiensis subsp israelensis (Bti) against mosquitoes, with special emphasis on the ecological impact. Israel J. Entomol. 32, 63-69.
  4. Burges, H. D. and Daoust, R. A. (1986) Current status of the use of bacteria as biocontrol agents; in Fundamental and Applied Aspects of Invertebrate Pathology, Samson, R. A., Vlak, J. M. and Peters, D. (eds.), pp. 514-517, Soc. Invertebr. Pathol., Wageningen, Netherlands
  5. Chang, W. X. Z., Gahan, L. J., Tabashnik, B. E. and Heckel, D. G. (1999) A new aminopeptidase from diamondback moth provides evidence for a gene duplication event in Lepidoptera. Insect Mol. Biol. 8, 171-177. https://doi.org/10.1046/j.1365-2583.1999.820171.x
  6. Chen, H., Kinzer, C. A. and Paul, W. E. (1996) p161, a murine membrane protein expressed on mast cells and some macrophages, is mouse CD13/aminopeptidase N. J. Immunol. 157, 2593-2600.
  7. Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J. and Dean, D. H. (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807-813.
  8. Crickmore, N., Zeigler, D. R., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., Bravo, A. and Dean, D. H. (2002) Bacillus thuringiensis toxin nomenclature. http://www.biols.susx.ac.uk/Home/Neil_Crickmore/Bt/index.html
  9. De Maagd, R. A., Bravo, A. and Crickmore, N. (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17, 193-199. https://doi.org/10.1016/S0168-9525(01)02237-5
  10. Denolf, P., Hendrickx, K., Van Damme, J., Jansens, S. and Peferoen, M. (1997) Cloning and characterization of Manduca sexta and Plutella xylostella midgut aminopeptidase N enzymes related to Bacillus thuringiensis toxin-binding proteins. Eur. J. Biochem. 248, 748-761. https://doi.org/10.1111/j.1432-1033.1997.t01-1-00748.x
  11. Emmerling, M., Chandler, D. and Sandeman, M. (2001) Molecular cloning of three cDNAs encoding aminopeptidases from the midgut of Helicoverpa punctigera, the Australian native budworm. Insect Biochem. Mol. Biol. 31, 899-907. https://doi.org/10.1016/S0965-1748(01)00036-4
  12. Gill, M. and Ellar, D. (2002) Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxin Cry1Ac1. Insect Mol. Biol. 11, 619-625. https://doi.org/10.1046/j.1365-2583.2002.00373.x
  13. Gill, S. S., Cowles, E. A. and Francis, V. (1995) Identification, isolation, and cloning of a Bacillus thuringiensis CryIAc toxinbinding protein from the midgut of the lepidopteran insect Heliothis virescens. J. Biol. Chem. 270, 27277-27282. https://doi.org/10.1074/jbc.270.45.27277
  14. Holt, R. A., Subramanian, G. M., Halpern, A., Sutton, G. G., Charlab, R., Nusskern, D. R., Wincker, P., Clark, A. G., Ribeiro, J. M., Wides, R., Salzberg, S. L., Loftus, B., Yandell, M., Majoros, W. H., Rusch, D. B., Lai, Z., Kraft, C. L., Abril, J. F., Anthouard, V., Arensburger, P., Atkinson, P. W., Baden, H., de Berardinis, V., Baldwin, D., Benes, V., Biedler, J., Blass, C., Bolanos, R., Boscus, D., Barnstead, M., Cai, S., Center, A., Chaturverdi, K., Christophides, G. K., Chrystal, M. A., Clamp, M., Cravchik, A., Curwen, V., Dana, A., Delcher, A., Dew, I., Evans, C. A., Flanigan, M., Grundschober-Freimoser, A., Friedli, L., Gu, Z., Guan, P., Guigo, R., Hillenmeyer, M. E., Hladun, S. L., Hogan, J. R., Hong, Y. S., Hoover, J., Jaillon, O., Ke, Z., Kodira, C., Kokoza, E., Koutsos, A., Letunic, I., Levitsky, A., Liang, Y., Lin, J. J., Lobo, N. F., Lopez, J. R., Malek, J. A., McIntosh, T. C., Meister, S., Miller, J., Mobarry, C., Mongin, E., Murphy, S. D., O'Brochta, D. A., Pfannkoch, C., Qi, R., Regier, M. A., Remington, K., Shao, H., Sharakhova, M. V., Sitter, C. D., Shetty, J., Smith, T. J., Strong, R., Sun, J., Thomasova, D., Ton, L. Q., Topalis, P., Tu, Z., Unger, M. F., Walenz, B., Wang, A., Wang, J., Wang, M., Wang, X., Woodford, K. J., Wortman, J. R., Wu, M., Yao, A., Zdobnov, E. M., Zhang, H., Zhao, Q., Zhao, S., Zhu, S. C., Zhimulev, I., Coluzzi, M., della Torre, A., Roth, C. W., Louis, C., Kalush, F., Mural, R. J., Myers, E. W., Adams, M. D., Smith, H. O., Broder, S., Gardner, M. J., Fraser, C. M., Birney, E., Bork, P., Brey, P. T., Venter, J. C., Weissenbach, J., Kafatos, F. C., Collins, F. H. and Hoffman, S. L. (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298, 129-149. https://doi.org/10.1126/science.1076181
  15. Hooper, N. M. (1994) Families of zinc metalloproteases. FEBS Lett. 354, 1-6. https://doi.org/10.1016/0014-5793(94)01079-X
  16. Hua, G., Tsukamoto, K., Rasilo, M. L. and Ikezawa, H. (1998a) Molecular cloning of a GPI-anchored aminopeptidase N from Bombyx mori midgut: a putative receptor for Bacillus thuringiensis CryIA toxin. Gene 214, 177-185. https://doi.org/10.1016/S0378-1119(98)00199-1
  17. Hua, G., Tsukamoto, K. and Ikezawa, H. (1998b) Cloning and sequence analysis of the aminopeptidase N isozyme (APN2) from Bombyx mori midgut. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 121, 213-222. https://doi.org/10.1016/S0305-0491(98)10091-3
  18. Hua, G., Masson, L., Jurat-Fuentes, J. L., Schwab, G. and Adang, M. J. (2001) Binding analyses of Bacillus thuringiensis Cry ${\delta}-endotoxins$ using brush border membrane vesicles of Ostrinia nubilalis. Appl. Environ. Microbiol. 67, 872-879. https://doi.org/10.1128/AEM.67.2.872-879.2001
  19. Knight, P. J., Knowles, B. H. and Ellar, D. J. (1995) Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis CryIA(c) toxin. J. Biol. Chem. 270, 17765-17770. https://doi.org/10.1074/jbc.270.30.17765
  20. MacIntosh, S. C., Stone, T. B., Jokerst, R. S. and Fuchs, R. L. (1991) Binding of Bacillus thuringiensis proteins to a laboratory-selected line of Heliothis virescens. Proc. Natl. Acad. Sci. USA 88, 8930-8933. https://doi.org/10.1073/pnas.88.20.8930
  21. Nakanishi, K., Yaoi, K., Nagino, Y., Hara, H., Kitami, M., Atsumi, S., Miura, N. and Sato, R. (2002) Aminopeptidase N isoforms from the midgut of Bombyx mori and Plutella xylostella their classification and the factors that determine their binding specificity to Bacillus thuringiensis Cry1A toxin. FEBS Lett. 519, 215-220. https://doi.org/10.1016/S0014-5793(02)02708-4
  22. Olsen, J., Cowell, G. M., Koenigshoefer, E., Danielsen, E. M., Moeller, J., Laustsen, L., Hansen, O. C., Welinder, K. G., Engberg, J., Hunziker, W., Spiess, M., Sjoestroem, H. and Noren, O. (1988) Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA. FEBS Lett. 238, 307-314. https://doi.org/10.1016/0014-5793(88)80502-7
  23. Rajagopal, R., Sivakumar, S., Agrawal, N., Malhotra, P. and Bhatnagar, R. K. (2002) Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J. Biol. Chem. 277, 46849-46851. https://doi.org/10.1074/jbc.C200523200
  24. Sambrook, J. Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
  25. Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R. and Dean, D. H. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775-806.
  26. Siegel, J. P. (2001) The mammalian safety of Bacillus thuringiensis-based insecticides. J. Invert. Pathology. 77, 13-21. https://doi.org/10.1006/jipa.2000.5000
  27. Taylor, A. (1993) Aminopeptidases: structure and function. FASEB J. 7, 290-298.
  28. Tresnan, D. B., Levis, R. and Holmes, K. V. (1996) Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J. Virol. 70, 8669-8674.
  29. Yamagiwa, M., Kamauchi, S., Okegawa, T., Esaki, M., Otake, K., Amachi, T., Komano, T. and Sakai, H. (2001) Binding properties of Bacillus thuringiensis Cry4A toxin to the apical microvilli of larval midgut of Culex pipiens. Biosci. Biotechnol. Biochem. 65, 2419-2427. https://doi.org/10.1271/bbb.65.2419
  30. Yang, X. F., Milhiet, P. E., Gaudoux, F., Crine, P. and Boileau, G. (1993) Complete sequence of rabbit kidney aminopeptidase N and mRNA localization in rabbit kidney by in situ hybridization. Biochem. Cell Biol. 71, 278-287. https://doi.org/10.1139/o93-042
  31. Yaoi, K., Nakanishi, K., Kadotani, T., Imamura, M., Koizumi, N., Iwahana, H. and Sato, R. (1999) cDNA cloning and expression of Bacillus thuringiensis Cry1Aa toxin binding 120 kDa aminopeptidase N from Bombyx mori. Biochim. Biophys. Acta 1444, 131-137. https://doi.org/10.1016/S0167-4781(98)00250-4

Cited by

  1. Molecular approaches to study the insect gut symbiotic microbiota at the ‘omics’ age vol.17, pp.3, 2010, https://doi.org/10.1111/j.1744-7917.2010.01340.x
  2. Molecular characterization of three genes encoding aminopeptidases N in the poplar leaf beetle Chrysomela tremulae vol.20, pp.2, 2011, https://doi.org/10.1111/j.1365-2583.2010.01067.x
  3. Crystal Structure of the Mosquito-larvicidal Toxin Cry4Ba and Its Biological Implications vol.348, pp.2, 2005, https://doi.org/10.1016/j.jmb.2005.02.013