DOI QR코드

DOI QR Code

Identification of the Most Accessible Sites to Ribozymes on the Hepatitis C Virus Internal Ribosome Entry Site

  • Received : 2003.04.14
  • Accepted : 2003.05.30
  • Published : 2003.11.30

Abstract

The hepatitis C virus (HCV) is a major causative agent of chronic hepatitis and hepatocellular carcinoma. The development of alternative antiviral therapies is warranted because current treatments for the HCV infection affect only a limited number of patients and lead to significant toxicities. The HCV genome is exclusively present in the RNA form; therefore, ribozyme strategies to target certain HCV sequences have been proposed as anti-HCV treatments. In this study, we determined which regions of the internal ribosome entry site (IRES) of HCV are accessible to ribozymes by employing an RNA mapping strategy that is based on a trans-splicing ribozyme library. We then discovered that the loop regions of the domain IIIb of HCV IRES appeared to be particularly accessible. Moreover, to verify if the target sites that were predicted to be accessible are truly the most accessible, we assessed the ribozyme activities by comparing not only the trans-splicing activities in vitro but also the trans-cleavage activities in cells of several ribozymes that targeted different sites. The ribozyme that could target the most accessible site identified by mapping studies was then the most active with high fidelity in cells as well as in vitro. These results demonstrate that the RNA mapping strategy represents an effective method to determine the accessible regions of target RNAs and have important implications for the development of various antiviral therapies which are based on RNA such as ribozyme, antisense, or siRNA.

Keywords

References

  1. Been, M. and Cech, T. (1986) One binding site determinessequence specificity of Tetrahymena pre-rRNA self-splicing, trans-splicing, and RNA enzyme activity. Cell 47, 207-216. https://doi.org/10.1016/0092-8674(86)90443-5
  2. Bukh, J., Purcell, R. H. and Miller, R. H. (1992) Sequenceanalysis of 5’ noncoding region of hepatitis C virus. Proc.Natl. Acad. Sci. USA 89, 4942-4946. https://doi.org/10.1073/pnas.89.11.4942
  3. Choo, Q. -L. Richman, K. H., Han, J. H., Berger, K., Lee, C.,Dong, C., Gallegos, C., Coit, D., Medina-Selby, A., Barr, P. J.,Weiner, A. J., Bradley, D. W., Kuo, G. and Houghton, M.(1991) Genetic organization and diversity of the hepatitis Cvirus. Proc. Natl. Acad. Sci. USA 88, 2451-2455. https://doi.org/10.1073/pnas.88.6.2451
  4. Chung, J. H., Park, H. -Y., Lee, J. H. and Jang, Y. (2002)Identification of the dITP- and XTP-hydrolyzing protein fromEscherichia coli. J. Biochem. Mol. Biol. 35, 403-408. https://doi.org/10.5483/BMBRep.2002.35.4.403
  5. Di Bisceglie, A. M., McHutchison, J. F. and Rice, C. M. (2002)New therapeutic strategies for hepatitis C. Hepatology 35, 224-231. https://doi.org/10.1053/jhep.2002.30531
  6. Fried, M. W., Shiffman, M. L., Reddy, K. R., Smith, C., Marinos,G., Goncales, F. L. Jr., Haussinger, D., Diago, M., Carosi, G.,Dhumeaux, D., Craxi, A., Lin, A., Hoffman, J. and Yu, J.(2002) Peginterferon alfa-2a plus ribavirin for chronic hepatitisC virus infection. N. Engl. J. Med. 347, 975-982. https://doi.org/10.1056/NEJMoa020047
  7. Hahm, B., Kim, Y. K., Kim, J. H., Kim, T. Y. and Jang, S. K.(1998) Heterogeneous nuclear ribonucleoprotein L interactswith the 3’ border of the internal ribosomal entry site ofhepatitis C virus. J. Virol. 72, 8782-8788.
  8. Hanecak, R., Browndriver, V., Fox, M. C., Azad, R. F., Furusako,S., Nozaki, C., Ford, C., Sasmor, H. and Anderson, K. P.(1996) Antisense oligonucleotide inhibition of hepatitis C virusgene expression in transformed hepatocytes. J. Virol. 70, 5203-5212.
  9. Honda, M., Beard, M. R., Ping, L. H. and Lemon, S. M. (1999)A phylogenetically conserved stem-loop structure at the 5'border of the internal ribosome entry site of hepatitis C virus isrequired for cap-independent viral translation. J. Virol. 73,1165-1174.
  10. Jones, J. T., Lee, S. -W. and Sullenger, B. A. (1996) Taggingribozyme reaction sites to follow trans-splicing in mammaliancells. Nat. Med. 2, 643-648. https://doi.org/10.1038/nm0696-643
  11. Jones, J. T. and Sullenger, B. A. (1997) Evaluating and enhancingribozyme reaction efficiency in mammalian cells. Nat.Biotechnol. 15, 902-905. https://doi.org/10.1038/nbt0997-902
  12. Kapadia, S. B., Brideau-Anderson, A. and Chisari, F. V. (2003)Interference of hepatitis C virus RNA replication by shortinterfering RNAs. Proc. Natl. Acad. Sci. USA 100, 2014-2018. https://doi.org/10.1073/pnas.252783999
  13. Kim, H. S. and Park, Y. S. (2002) Effect of lipid compositions ongene transfer into 293 cells using sendai F/HN-virosomes. J.Biochem. Mol. Biol. 35, 459-464. https://doi.org/10.5483/BMBRep.2002.35.5.459
  14. Lan, N., Howrey, R. P., Lee, S. -W., Smith, C. A. and Sullenger,B. A. (1998) Ribozyme-mediated repair of sickle ${\beta}β-globin$mRNAs in erythrocyte precursors. Science 280, 1593-1596. https://doi.org/10.1126/science.280.5369.1593
  15. Lan, N., Rooney, B. L., Lee, S. -W., Howrey, R. P., Smith, C. A.and Sullenger, B. A. (2000) Enhancing RNA repair efficiencyby combining trans-splicing ribozymes that recognize differentaccessible sites on a target RNA. Mol. Ther. 2, 245-255. https://doi.org/10.1006/mthe.2000.0125
  16. Lauer, G. M. and Waker, B. D. (2001) Hepatitis C virus infection.N. Engl. J. Med. 345, 41-52. https://doi.org/10.1056/NEJM200107053450107
  17. Lieber, A., He, C. Y., Polyak, S. J., Gretch, D. R., Barr, D. andKay, M. A. (1996) Elimination of hepatitis C virus RNA ininfected human hepatocytes by adenovirus-mediated expressionof ribozymes. J. Virol. 70, 8782-8791.
  18. Macejak, D. G., Jensen, K. L., Jamison, S. F., Domenico, K., Roberts, E. C., Chaudhary, N., von Carlowitz, I., Bellon, L.,Tong, M. J., Conrad, A., Pavco, P. A. and Blatt, L. M. (2000)Inhibition of hepatitis C virus (HCV)-RNA-dependenttranslation and replication of a chimeric HCV poliovirus usingsynthetic stabilized ribozymes. Hepatology 31, 769-776. https://doi.org/10.1002/hep.510310331
  19. Manns, M. P., McHutchison, J. G., Gordon, S. C., Rustgi, V. K.,Shiffman, M., Reindollar, R., Goodman, Z. D., Koury, K.,Ling, M. and Albrecht, J. K. (2001) Peginterferon alfa-2b plusribavirin compared with interferon alfa-2b plus ribavirin forinitial treatment of chronic hepatitis C: a randomised trial.Lancet 358, 958-965. https://doi.org/10.1016/S0140-6736(01)06102-5
  20. Miller, R. H. and Purcell, R. H. (1990) Hepatitis C virus sharesamino acid sequence similarity with pestiviruses andflaviviruses as well as members of two plant virus supergroups.Proc. Natl. Acad. Sci. USA 87, 2057-2061. https://doi.org/10.1073/pnas.87.6.2057
  21. Phylactou, L. A., Darrah, C. and Wood, M. J. (1998) Ribozyme-mediatedtrans-splicing of a trinucleotide repeat. Nat. Genet.18, 378-381. https://doi.org/10.1038/ng0498-378
  22. Randall, G., Grakoul, A, and Rice, C. M. (2003) Clearance ofreplicating hepatitis C virus replicon RNAs in cell culture bysmall interfering RNAs. Proc. Natl. Acad. Sci. USA 100, 235-240. https://doi.org/10.1073/pnas.0235524100
  23. Rogers, C. S., Vanoye, C. G., Sullenger, B. A. and George, Jr., A.L. (2002) Functional repair of a mutant chloride channel usinga trans-splicing ribozyme. J. Clin. Invest. 110, 1783-1798. https://doi.org/10.1172/JCI200216481
  24. Rosenberg, S. (2001) Recent advances in the molecular biology ofhepatitis C virus. J. Mol. Biol. 313, 451-464. https://doi.org/10.1006/jmbi.2001.5055
  25. Ryu, K. -J., Kim, J. -H. and Lee, S. -W. (2003) Ribozyme-mediatedselective induction of new gene activity in hepatitis Cvirus internal ribosome entry site-expressing cells by targetedtrans-splicing. Mol. Ther. 7, 386-395. https://doi.org/10.1016/S1525-0016(02)00063-1
  26. Sakamoto, N., Wu, C. H. and Wu, G. Y. (1996) Intracellularcleavage of hepatitis C virus RNA and inhibition of viralprotein translation by hammerhead ribozymes. J. Clin. Invest.98, 2720-2728. https://doi.org/10.1172/JCI119097
  27. Shin, K. -S., Bae, S. -J., Hwang, E. -S., Jeong, S. and Lee, S. -W.(2002) Ribozyme-mediated replacement of p53 RNA bytargeted trans-splicing. J. Microbiol. Biotechnol. 12, 844-848.
  28. Sullenger, B. A. (1996) Ribozyme-mediated repair of RNAsencoding mutant tumor suppressors. Cytokines Mol. Ther. 2,201-206.
  29. Sullenger, B. A. and Cech, T. R. (1994) Ribozyme-mediated repairof defective mRNA by targeted trans-splicing. Nature 317,619-622.
  30. Sullenger, B. A. and Gilboa, E. (2002). Emerging clinicalapplications of RNA. Nature 418, 252-258. https://doi.org/10.1038/418252a
  31. Wang, T. H., Rijnbrand, R. C. and Lemon, S. M. (2000) Coreprotein-coding sequence, but not core protein, modulates theefficiency of cap-independent translation directed by theinternal ribosome entry site of hepatitis C virus. J. Virol. 74,11347-11358. https://doi.org/10.1128/JVI.74.23.11347-11358.2000
  32. Watanabe, T. and Sullenger, B. A. (2000) Induction of wild-typep53 activity in human cancer cells by ribozymes that repairmutant p53 transcripts. Proc. Natl. Acad. Sci. USA 97, 8490-8494. https://doi.org/10.1073/pnas.150104097
  33. Welch, P. J., Tritz, R., Yei, S., Leavitt, M., Yu, M. and Barber, J.(1996) A potential therapeutic application of hairpin ribozymes:in vitro and in vivo studies of gene therapy for hepatitis Cvirus infection. Gene Ther. 3, 994-1001.
  34. Wilson, J. A., Jayasena, S., Khvorova, A., Sabatinos, S., Rodrigue-Gervais, I. G., Arya, S., Sarangi, F., Harris-Brandts, M.,Beaulieu, S. and Richardson, C. D. (2003) RNA interferenceblocks gene expression and RNA synthesis from hepatitis Creplicons propagated in human liver cells. Proc. Natl. Acad.Sci. USA 100, 2783-2788. https://doi.org/10.1073/pnas.252758799
  35. Witherell, G. W. (2001) ISIS-14803 (ISIS Pharmaceuticals). Curr.Opin. Investig. Drugs. 2, 1523-1529.
  36. World Health Organization. (1999) Global surveillance and controlof hepatitis C. J Viral Hepat. 6, 35-47. https://doi.org/10.1046/j.1365-2893.1999.6120139.x

Cited by

  1. Hepatitis C Virus Translation Inhibitors Targeting the Internal Ribosomal Entry Site vol.57, pp.5, 2014, https://doi.org/10.1021/jm401312n
  2. Genetic medicine at the RNA level: modifications of the genetic repertoire for therapeutic purposes by pre-mRNA trans-splicing vol.327, pp.8, 2004, https://doi.org/10.1016/j.crvi.2004.05.008
  3. Old and emerging therapies in chronic hepatitis C: an update vol.0, pp.0, 2007, https://doi.org/10.1111/j.1365-2893.2007.00887.x
  4. RNA reprogramming and repair based on trans-splicing group I ribozymes vol.27, pp.3, 2010, https://doi.org/10.1016/j.nbt.2010.02.013
  5. Selective expression of transgene using hypoxia-inducible trans-splicing group I intron ribozyme vol.192, 2014, https://doi.org/10.1016/j.jbiotec.2014.10.001
  6. Gene Therapy Progress and Prospects: Reprograming gene expression by trans-splicing vol.12, pp.20, 2005, https://doi.org/10.1038/sj.gt.3302596
  7. Biaryl guanidine inhibitors of in vitro HCV-IRES activity vol.14, pp.20, 2004, https://doi.org/10.1016/j.bmcl.2004.07.066
  8. Oligomeric Nucleic Acids as Antivirals vol.16, pp.2, 2011, https://doi.org/10.3390/molecules16021271