DOI QR코드

DOI QR Code

Determining a Detectable Threshold of Signal Intensity in cDNA Microarray Based on Accumulated Distribution

  • Gao, Xia (Physics Department, Fudan University) ;
  • Fu, Xuping (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University) ;
  • Li, Tao (Shanghia Biostar Genechip Istitute) ;
  • Zi, Jian (Physics Department, Fudan University) ;
  • Luo, Yao (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University) ;
  • Wei, Qing (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University) ;
  • Zeng, Erliang (Shanghia Biostar Genechip Istitute) ;
  • Xie, Yi (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University) ;
  • Li, Yao (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University) ;
  • Mao, Yumin (State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University)
  • Received : 2003.03.27
  • Accepted : 2003.06.04
  • Published : 2003.11.30

Abstract

In microarray data mining, one of the key problems is how to handle weak signals. Based on a bent piecewise linear accumulated distribution generally found in the microarray data, a new detectable threshold finding method is proposed to filter genes with unreliable information in this paper. More reliable and reproducible data is produced for the subsequent data mining.

Keywords

References

  1. Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S.,Rosenwald, A., Boldrick, J. C., Sabet, H., Tran, T., Yu, X.,Powell, J. I., Yang, L., Marti, G. E., Moore, T., Hudson, J. Jr.,Lu, L., Lewis, D. B., Tibshirani, R., Sherlock, G., Chan, W. C.,Greiner, T. C., Weisenburger, D. D., Armitage, J. O., Warnke,R., Levy, R., Wilson, W., Grever, M. R., Byrd, J. C., Botstein,D., Brown, P. O. and Staudt, L. M. (2000) Distinct types ofdiffuse large B-cell lymphoma identified by gene expressionprofiling. Nature 403, 503-511. https://doi.org/10.1038/35000501
  2. Bilban, M., Buehler, L. K., Head, S., Desoye, G. and Quaranta, V.(2002) Defining signal thresholds in DNA microarrays:exemplary application for invasive cancer. BMC Genomics 3, 19. https://doi.org/10.1186/1471-2164-3-19
  3. Cunningham, M. J., Liang, S., Fuhrman, S., Seihamer, J. J. andSomogyi, R. (2000) Gene expression microarray data analysisfor toxicology profiling. Ann. N. Y. Acad. Sci. 919, 52-67.
  4. Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D.(1998) Cluster analysis and display of genome-wide expressionpatterns. Proc. Natl. Acad. Sci. USA 95, 14863-14868. https://doi.org/10.1073/pnas.95.25.14863
  5. Epstein, C. B., Hale, W. 4th and Butow, R. A. (2001) Numericalmethods for handling uncertainty in microarray data: anexample analyzing perturbed mitochondrial function in yeast.Methods Cell Biol. 65, 439-52. https://doi.org/10.1016/S0091-679X(01)65026-X
  6. Hoyle, D. C., Rattray, M., Jupp, R. and Brass, A. (2002) Makingsense of microarray data distributions. Bioinformatics 18, 576-584. https://doi.org/10.1093/bioinformatics/18.4.576
  7. Ko, J., Na, D. S., Lee, Y. H., Shin, S. Y., Kim, J. H., Hwang, B.G., Min, B. I. and Park, D. S. (2002) cDNA microarrayanalysis of the differential gene expression in the neuropathicpain and electroacupuncture treatment models. J. Biochem.Mol. Biol. 35, 420-427. https://doi.org/10.5483/BMBRep.2002.35.4.420
  8. Kooperberg, C., Fazzio, T. G., Delrow, J. J. and Tsukiyama, T.(2002) Improved background correction for spotted DNAmicroarray. J. Comput. Biol. 9, 55-66. https://doi.org/10.1089/10665270252833190
  9. Lee, M. -L. T., Kuo, F. C., Whitmore, G. A. and Sklar, J. (2000)Importance of replication in microarray gene expressionstudies: statistical methods and evidence from repetitive cDNAhybridizations. Proc. Natl. Acad. Sci. USA 97, 9834-9839. https://doi.org/10.1073/pnas.97.18.9834
  10. Lee, S. W., Kwak, H. B., Lee, H. C., Lee, S. K., Kim, H. H. andLee, Z. H. (2002) The anti-proliferative gene TIS21 is involvedin osteoclast differentiation. J. Biochem. Mol. Biol. 35, 609-614. https://doi.org/10.5483/BMBRep.2002.35.6.609
  11. Quackenbush, J. (2002) Microarray data normalization andtransformation. Nat. Genet. 32 Suppl, 496-501. https://doi.org/10.1038/ng1032
  12. Sakai, K., Higuchi, H., Matsubara, K. and Kato, K. (2000)Microarray hybridization with fractionated cDNA: enhancedidentification of differentially expressed genes. Anal. Biochem.287, 32-37. https://doi.org/10.1006/abio.2000.4831
  13. Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. (1995)Quantitative monitoring of gene expression patterns with acomplementary DNA microarray. Science 270, 467-470. https://doi.org/10.1126/science.270.5235.467
  14. Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P. O. andDavis, R. W. (1996) Parallel human genome analysis:microarray-based expression monitoring of 1000 genes. Proc.Natl. Acad. Sci. USA 93, 10614-10619. https://doi.org/10.1073/pnas.93.20.10614
  15. Spellman. P. T., Sherlock, G. Zhang, M. Q., Iyer, V. R., Anders,K., Eisen, M. B., Brown, P. O., Botstein, D. and Futcher, B.(1998) Comprehensive identification of cell cycle-regulatedgenes of the yeast Saccharomyces cerevisiae by microarrayhybridization. Mol. Biol. Cell 9, 3273-97. https://doi.org/10.1091/mbc.9.12.3273
  16. Tseng, G. C., M. K., Rohlin, L., Liao, J. C. and Wong, W. H.(2001) Issues in cDNA microarray analysis: quality filtering,channel normalization, models of variations and assessment ofgene effects. Nucleic Acids Res. 29, 2549-2557. https://doi.org/10.1093/nar/29.12.2549
  17. Yang, M. C. K., Ruan, Q. G., Yang, J. J., Eckenrode, S., Wu, S.,McIndoe, R. A. and She, J. X. (2001) A statistical procedurefor flagging weak spots greatly improves normalization andratio estimates in microarray experiments. Physiol. Genomics 7,45-53.
  18. Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., Ngai, J.and Speed, T. P. (2002) Normalization for cDNA microarraydata; a robust composite method addressing single and multipleslide systematic variation. Nucleic Acids Res. 30, e15. https://doi.org/10.1093/nar/30.4.e15