
ETRI Journal, Volume 25, Number 6, December 2003 Mi-Jung Choi et al. 445

XML-based network management, which applies XML
technologies to network management, has been proposed as
an alternative to existing network management. The use of
XML in network management offers many advantages.
However, most existing network devices are already
embedded with simple network management protocol
(SNMP) agents and managed by SNMP managers. For
integrated network management, we present the
architectures of an XML-based manager, an XML-based
agent, and an XML/SNMP gateway for legacy SNMP
agents. We describe our experience of developing an XML-
based network management system (XNMS), XML-based
agent, and an XML/SNMP gateway. We also verify the
effectiveness of our XML-based agent and XML/SNMP
gateway through performance tests. Our experience with
developing XNMS and XML-based agents can be used as a
guideline for development of XML-based management
systems that fully take advantage of the strengths of XML
technologies.

Keywords: XML-based network management, XML,
SNMP, XML/SNMP gateway, DOM, SAX, XML Schema,
XPath, XSL, XSLT, XQuery, XUpdate, SOAP.

Manuscript received May 14, 2003; revised July 3, 2003.
This work was in part supported by the Electrical and Computer Engineering Division at

POSTECH under the BK21 program of Ministry of Education and HY-SDR Research Center
at Hanyang University under the ITRC program of Ministry of Information and
Communication, Korea.

Mi-Jung Choi (phone: +82 54 279 5654, email: mjchoi@postech.ac.kr) and James W. Hong
(email: jwkhong@postech.ac.kr) are with the DPNM Laboratory, POSTECH, Pohang, Korea.

Hong-Taek Ju (email: juht@kmu.ac.kr) is with the Computer Network Laboratory,
Keimyung University, Daegu, Korea.

I. Introduction

The rapid pace of Internet evolution is currently witnessing
the emergence of diverse network devices. The current
complex IP networks are composed of these network devices.
Efficient network management systems are necessary to
manage these networks and network devices. Since its
development in the late 1980s, the management of IP networks
has exclusively relied on the simple network management
protocol (SNMP) [1]. However, the SNMP management
framework has some weaknesses related to configuration
management and the application development process in
managing large networks [2]. Today, technologies using
Extensible Markup Language (XML) [3] seem to be a
promising solution.

XML, which is a meta-markup language standardized by the
WorldWide Web Consortium (W3C) for document exchange
in the web, is widely used for business-to-business integration,
data interchange, e-commerce, and the creation of application-
specific vocabularies. It supports several standards such as
XML Schema [4], document object model (DOM) application
program interface (API) [5], XML path language (XPath) [6],
Extensible Stylesheet Language (XSL) [7], XSL
transformations (XSLT) [8], etc. Many efforts are in progress to
apply XML technologies and their previously existing
implementations to a wide range of network management.
Using XML in network management presents many
advantages [2]:

– The XML Schema defines the structure of management
information in a flexible manner.

– Widely deployed protocols such as HTTP [9] reliably
transfer management data.

– DOM APIs easily access and manipulate management
data from applications.

– XPath expressions efficiently address the objects within

XML-Based Network Management for IP Networks

 Mi-Jung Choi, James W. Hong, and Hong-Taek Ju

446 Mi-Jung Choi et al. ETRI Journal, Volume 25, Number 6, December 2003

management data documents.
– XSL processes management data easily and generates

HTML documents for a variety of user interface views.
– Web Service Description Language (WSDL) [10] and

simple object access protocol (SOAP) [11] define web
services for powerful high-level management
operations.

However, these current efforts to apply XML to network
management are accomplished in a limited network
management area, such as configuration management, or
performed in the development process of a network
management system using a few simple XML technologies.

Four possible combinations between managers and agents
can be considered for XML-based integrated network
management [12] (Fig.1). Figure 1(a) shows the current, widely
deployed SNMP-based network management, and Fig. 1(d)
shows an XML-based management scheme using an XML-
based manager and XML-based agent. The gateways shown in
Figs. 1(b) and 1(c) translate messages and operations between
different management schemes, XML and SNMP. Figure 1(d)
is the most ideal framework for gaining the maximum
advantages of XML-based network management. However,
most network devices currently deployed are equipped only
with SNMP agents, and this architecture is hardly applicable to
the current situation. Therefore, an XML/SNMP gateway is
needed for the XML-based manager to manage SNMP-
enabled network devices as well as devices equipped with
XML-based agents. Figure 1(c) shows the most practical
management framework using the XML/SNMP gateway,
which translates and relays messages between an XML-based
manager and an SNMP agent.

In this paper, we present the architecture of an XML-based

manager, an XML-based agent, and an XML/SNMP gateway
for XML-based integrated network management of IP-based
networks. We also explain our XML-based network management
system, called the XML-based network management system
(XNMS), for managing network devices using XML
technologies and methods of fully applying XML technologies
to network management. Using performance tests, we verify
the efficiency of XML-based network management systems.
Our experience with developing XNMS, an XML-based agent,
and an XML/SNMP gateway can be used as a good guideline
for those who develop XML-based network management
systems.

The organization of this paper is as follows. Section II
describes the XML-based network management work carried
out by other research groups [13]-[15] and vendors [16], [17].
In section III, we present the design of an XML-based
network management system composed of an XML-based
manager, an XML-based agent, and an XML/SNMP gateway.
In section IV, we describe our implementation details of the
proposed XNMS and XML-based agent. In section V, we
discuss the validation and performance tests of the proposed
solution. Finally, in section VI, we conclude our work and
discuss directions for future work.

II. Related Work

In this section, we describe recent research on XML-based
network management performed by other research groups. We
also introduce several standard activities and industry efforts in
this area.

1. Research on XML-Based Network Management

In this section, we describe related research work on XML-

Fig. 1. Combinations of manager and agent.

(a) (b) (c) (d)

Mgmt.
appl. SNMP manager XML-based manager XML-based manager

XML/HTTP
SNMP

Web-MUI

SNMP manager

SNMP

Device
SNMP agent

SNMP/XML
gateway

XML/HTTP

Device
XML-based agent

XML/HTTP

XML/SNMP
gateway

SNMP

Device
SNMP agent

XML/HTTP

Device
XML-based agent

ETRI Journal, Volume 25, Number 6, December 2003 Mi-Jung Choi et al. 447

SNMP integration, XML-based management architectures,
and XML-based management using Web Services.

A. XML-SNMP Integration

• Specification translation
J.P. Martin-Flatin proposed the SNMP management

information base (MIB) for XML translation models, namely
model-level mapping and metamodel-level mapping [18]. In
model-level mapping, the document type definition (DTD) is
specific to a particular SNMP MIB (set of MIB variables), and
the XML elements and attributes in the DTD have the same
names as the SNMP MIB variables. In metamodel-level
mapping, the DTD is generic and identical for all SNMP MIBs.

F. Strauss presented a library to access structure of
management information (SMI) MIB information, “libsmi”
[19], which translates SNMP MIB to other languages, such as
JAVA, CORBA, C, and XML. This library provides tools to
check, analyze, dump, convert, and compare MIB definitions.
The conversion tool, called “smidump,” converts MIB
modules to XML Schema.

In previous work on the XML/SNMP gateway, we
developed an SNMP MIB to XML translation algorithm and
also implemented an SNMP MIB to the XML translator using
this algorithm [20]. For validation of the algorithm, we
implemented an XML-based SNMP MIB browser using this
SNMP MIB to the XML translator.

• XML/SNMP gateway
Jens Müller implemented an SNMP/XML gateway [19] as a

Java Servlet that allows fetching of such XML documents on
the fly through HTTP. MIB portions can be addressed through
XPath(-like) expressions encoded in the URLs to be retrieved.
The gateway works as follows. When an MIB module to be
dumped is passed to mibdump, an SNMP session is initiated,
and then sequences of SNMP GetNext operations are issued to
retrieve all objects of the MIB from the agent. Mibdump
collects the retrieved data and the contents of these data are
dumped in the form of an appropriate XML document with
respect to the predefined XML Schema.

Avaya Labs is currently developing an XML-based
management interface for SNMP enabled devices [15]. The
prototype system consists of three parts:

– A tool for automatic generation of an XML Schema
definition based on SNMP SMI information.

– A messaging protocol based on an XML-remote
procedure call (RPC) for retrieving and modifying MIB
information in SNMP enabled devices. The messaging
protocol defines XML Schema for a set of query
commands (GET, SET, LIST, CREATE, DELETE) and
identifies MIB variables using XPath-based identifiers.

– An adapter for retrieving and modifying device
information in the form of XML data based on the
information in the device's MIB.

They have already implemented a tool for mapping SNMP
SMI information modules to the XML Schema. This tool is an
extension of a previously implemented tool for converting
SNMP SMI to CORBA-IDL [21]. They are currently
implementing the XML document adapter for SNMP MIB
modules using Net-SNMP [22] and XML-RPC libraries [23].

In our previous work [24], [25], we proposed several
interaction translation methods between an XML/SNMP
gateway and an XML-based manager based on the previously
developed specification translation algorithm [20]. First, we
proposed a DOM-based translation method that enables the
manager to directly access DOM in the gateway using DOM
interfaces in order to exchange management information with
the SNMP agent. In the HTTP-based translation, we extended
a URI string that contains information on a request with XPath
and XQuery. XPath and XQuery can be easily applied to URIs
to express a location path of target objects and to provide a
query language in the request message. This method improves
efficiency in XML/HTTP communication, which is the most
common form in the exchange of XML documents. Finally,
we proposed a SOAP-based translation method. Using SOAP,
the gateway provides a flexible and standardized method for
interaction with the XML-based manager in a distributed
environment. We have implemented and validated our
XML/SNMP gateway for our XNMS.

B. Management Architecture

J.P. Martin-Flatin presented an idea to use XML for
integrated management in his research on web-based
integrated network management architecture (WIMA) [18].
WIMA provides a way to exchange management information
between a manager and an agent through HTTP. HTTP
messages are structured with a multipurpose Internet mail
extensions (MIME) multipart. Each MIME part can be an
XML document, a binary file, BER-encoded SNMP data, etc.
By separating the communication and information models,
WIMA allows management applications to transfer SNMP,
common information model (CIM), or other management data.
A WIMA-based research prototype, java management
platform [18], implemented push-based network management
using Java technology.

We proposed an XML-based network management (XNM)
using an embedded web server (EWS) in our previous research
[26]. In this work, we extended the use of EWS for element
management to network management. XNM uses XML to
transfer management information over HTTP between an

448 Mi-Jung Choi et al. ETRI Journal, Volume 25, Number 6, December 2003

agent and a manager. XNM also uses DOM for the
representation of and the access to management data.

C. XML-Based Management Using Web Services

The Network Management Research Group (NMRG) [13]
of the Internet Research Task Force (IRTF) is a forum for
researchers to discuss and develop new technologies for
improving Internet management. Recently, NMRG organized
a meeting to investigate the advantages and disadvantages of
using web services technology for Internet management. In the
meeting on web services, the participants discussed web
services technologies, including SOAP [11], WSDL [12], and
universal discovery description and integration [27], and
compared them with SNMP. They also dealt with security in
web services. NMRG’s work in this area is in the early stage
and has not yet produced any substantial results.

The Organization for the Advancement of Structured
Information Standards (OASIS) [28] is a consortium that
produces worldwide standards for security, web services, XML
conformance, business transactions, electronic publishing, etc.
The purpose of the OASIS Management Protocol Technical
Committee [14] is to develop open industry standard
management protocols to provide a web-based mechanism to
monitor and control managed elements in a distributed
environment based on industry accepted management models,
methods, and operations, including open model interface
(OMI) [29], XML, SOAP, DMTF CIM, and DMTF CIM
operations. The management protocol technical committees
(TCs) delivered a published management protocol
specification on June 2003, but their work in this area is in the
early stage.

2. Standardization Activities

In this section, we present the standardization efforts on
XML-based network management within the Distributed
Management Task Force (DMTF) and the Internet Engineering
Task Force (IETF).

A. WBEM

Web-based enterprise management (WBEM) [30] is an
initiative of the DMTF and includes a set of technologies that
enables the interoperable management of an enterprise.
WBEM consists of a CIM [31], a DTD to represent CIM in
XML [32], and a specification for CIM operations over HTTP
[33]. CIM provides a comprehensive object-oriented
information model, and the CIM schemas are implemented not
only for managing servers but also for network resources such
as switches and routers. WBEM is currently being updated to
include emerging standards such as SOAP. DMTF is

collaborating with OASIS [28] to sponsor a new management
protocol technical committee and to develop open industry
standard management protocols.

B. IETF XML Configuration (XMLCONF) BOF and Network
Configuration (Netconf) Working Group

In the 54th IETF meeting in July 2002, a birds of a feather
(BOF) session concerned with XML configuration (XMLCONF)
was held. This BOF discussed the requirements for network
configuration management and how the existing XML
technologies, namely SOAP [11], WBEM [30], SyncML [34],
and JUNOScript [16] could be used to meet those
requirements. There are some Internet drafts [35], [36] that
present basic concepts and the requirements for XML network
configuration and provide guidelines for the use of XML
within IETF standards protocols.

The Network Configuration (Netconf) Working Group [37]
was formed in May 2003. The Netconf Working Group is
chartered to produce a protocol suitable for network
configuration. The Netconf protocol will use XML for data
encoding purposes, because XML is a widely deployed
standard that is supported by a large number of applications.
XML also supports hierarchical data structures. The Netconf
working group will take the XMLCONF configuration
protocol as a starting point.

C. ITU-T X.3030 - Telecommunications Markup Language
(tML) Framework

The Alliance for Telecommunications Industry Solutions
Technical Subcommittee T1M1 (Internetwork Operations,
Administration, Maintenance and Provisioning) is
developing a Telecommunications Markup Language (tML)
standard that would govern telecommunications network
management. The tML is a language derived from XML and
based on plain text tags that describe vocabulary used in the
exchange of data between telecommunications entities. The
goal of the tML framework is to guide the development of
interoperable operations, administration, maintenance, and
provisioning (OAM&P) interfaces using XML for the
telecom domain, to apply to various telecommunications
OAM&P functions, and to provide a common framework in
developing network management specifications by different
groups. This recommendation [38] is a framework
containing rules, guidelines, and objectives for developing
telecommunications industry standard tML schemas for
OAM&P applications.

3. Industry Initiative

In this section, we introduce recent industry initiatives for
XML-based network management.

ETRI Journal, Volume 25, Number 6, December 2003 Mi-Jung Choi et al. 449

A. Juniper Networks’ JUNOScript

Recently, Juniper Networks introduced JUNOScript [16] for
their JUNOS network operating system. The JUNOScript, a
part of their XML-based network management effort, uses a
simple model that is designed to minimize both
implementation costs and the impact on the managed device.
The JUNOScript allows client applications to access
operational and configuration data using an XML-RPC. The
JUNOScript defines the DTDs for the RPC messages between
client applications and JUNOScript servers running on the
devices. Client applications can request information by
encoding the request with JUNOScript tags in the DTDs and
sending it to the JUNOScript server. The JUNOScript server
delivers the request to the appropriate software modules within
the device, encodes the response with JUNOScript tags, and
returns the result to the client application.

B. Cisco’s Configuration Registrar

The Cisco configuration registrar [17] is a web-based system
for automatically distributing configuration files to Cisco IOS
network devices. The configuration registrar works in conjunction
with the Cisco networking services (CNS) configuration agents
located at each device. The configuration registrar delivers the
initial configuration to Cisco devices when starting up on the
network for the first time. It uses HTTP to communicate with
the agent and transfers configuration data in XML. The
configuration agent in the device uses its own XML parser to
interpret the configuration data from the received
configuration files.

III. Design of an XML-Based Network Management
System

In section I, we investigated four approaches towards XML-
based network management. To replace SNMP-based NMSs
with an XML-based NMS, an XML-based manager, an XML-
based agent, and a gateway are all necessary. In this section, we
present the detailed architectures of an XML-based manager,
an XML-based agent, and an XML/SNMP gateway.

1. XML-Based Manager

Figure 2 illustrates the architecture of an XML-based
manager. A web server is used to provide administrators with a
Web-MUI and for receiving requests from the management
application and passing them to the management components
through the management script. The web server is used to
receive asynchronous messages for notifications from the
devices via HTTP. The HTTP client plays a role in the interface
module of the device and exchanges synchronous management
information with the agent. The database (DB) is used to store
management information for long-term analysis. The XSL
template repository stores XSL files for generating HTML
documents from XML documents. The management
components, such as the device configuration manager or
analyzer, use the DOM interface to implement the
management application functions because management
information is represented in XML data. These functions
include filtering, logging, and collecting data from multiple
agents.

Fig. 2. Architecture of XML-based manager.

Management application

Web server

Management script
Event

reporter

Mgmt
server

manager
Monitoring
manager

Device
config.

manager
Logging
manager Analyzer Notification

handler Presenter

XSL
template
repository

DB

HTTP
client

DOM API
XML DOM parser

HTTP (notification)
HTTP

(notification)

XML/
SNMP

gateway A
g
e
n
t
s

HTTP SNMP

HTTP

XPath/XSLT processor

HTTP

450 Mi-Jung Choi et al. ETRI Journal, Volume 25, Number 6, December 2003

The basic components processing management functionalities
[39] are management server manager, monitoring manager,
device configuration manager, analyzer, notification handler,
logging manager, presenter, and event reporter. The
management server manager manages the configuration
parameters for the management processing environment and
handles the topologies of multi-level device/device group tree
architecture. This component also manages an administrator
account list. The device configuration manager gets and sets
the configuration of a managed device; the monitoring
manager obtains device monitoring information, such as device
status and in/out traffic; and the Logging Manager logs the
necessary data and analyzes the log data stored in the DB
according to the administrator’s request.

The Notification Handler receives notifications from the
managed devices, stores the notifications in the DB tables, and
sends a meaningful notification to the event reporter. The event
reporter generates appropriate events and sends them to
administrators by email, a pager, etc. The analyzer analyzes the
collected management information. The presenter processes
the XML document with XSLT and generates an HTML
document for Web-MUI.

There are three typical information flows within the XML-
based manager in Fig. 2. The first data flow is the management
request from the management application to the web server.
The web server calls the management script and selects the
proper management module. If the management function is to
monitor a device, the procedure is as follows. The management
script calls the monitoring manager, which sends the request to
an agent through the HTTP client, after which the result returns
to the management application in reverse order. If the result
needs to be stored for later analysis, the monitoring manager
stores it in the DB. This flow is the same as the traditional
SNMP Get operation. The flow of a Set method is the same as
the SNMP Get method. The agent can be an XML-based agent
or an SNMP agent.

Secondly, when the agent sends a notification to the
administrator, the information travels in the following order.
The agent sends an alert message to the web server of an
XML-based manager through HTTP. The web server receives
the notification and calls the Notification Handler through
management script. The Notification Handler sends the
specific event to the Event Reporter for generating the
appropriate event and stores the notification for later analysis to
the DB. This flow is the same as the SNMP Trap operation.

The last data flow from the Management Application,
through the web server, the Management Script, and the DOM
interface, to the DB is used to generate a long-term analysis
report. For example, the web server first calls the Analyzer
through the Management Script, then the Analyzer searches for

data from the DB using the DOM interface. After processing
the data by filtering, sorting, and correlating, it finally deduces
the result. The analysis result is then sent to the Management
Application.

2. XML-Based Agent

Figure 3 illustrates the architecture of an XML-based agent.
The basic component of the XML-based agent is the
embedded web server (EWS) [40]. The components added to
the EWS are the XML processor, including the SAX Parser
(which is an XML parser) and the push scheduler, and the
HTTP Client Engine. The SAX Parser does not support a write
function; therefore, a Write Module is also necessary.

In our previous work [26], we used DOM and XPath for
handling the XML document in the agent as well as in the
manager. DOM and XPath are effective in processing XML
documents for accessing and filtering. In our previous work,
the device that embeds the XML-based agent was a Linux
server, which posed no problems with resources. However,
supporting DOM [5] and XPath [6] needs more memory
resources in the device. To access a part of an XML document,
the DOM tree of the whole XML document is loaded into
memory. This wastes CPU and memory resources in the
device. Moreover, the code size of basic libraries widely used
for supporting DOM and XPath is large. Therefore, it is not
suitable to apply DOM in an embedded system having few
resources.

The code size and executable memory size of the Sax Parser
[41] is smaller than DOM [42], [43]. As the SAX Parser is an
event-driven mechanism for accessing and processing XML
documents, there is no need to load the entire XML tree into
the memory. Therefore, the SAX Parser is much lighter than
the DOM from the perspective of functionalities and resources.
While the SAX Parser can be lighter in resource usage because
it reads the XML document in sequential order and generates
an event for a specific element, the processing time for
accessing an XML document of the SAX Parser is slower than
that of DOM after the DOM tree is generated. However, the
management information of most network devices is not so
immense and can be defined by several small XML documents
containing mutually related management data. Therefore, the
processing time of the SAX Parser matters little. The access
method of the SAX Parser is serial and read-only, so we added
a Write Module as part of XML processor to provide a writing
mechanism. Because we set a greater value on low resource
requirements, we selected the SAX Parser instead of the DOM.

The SAX Parser parses the XML document, selects the
specified node when parsing, and reads management data. In
order to send up-to-date information, the agent gathers

ETRI Journal, Volume 25, Number 6, December 2003 Mi-Jung Choi et al. 451

Fig. 3. Architecture of XML-based agent.

Virtual
file system HTTP

EWS (HTTP server engine)

HTTP client engine

Push
handler

Management
script

XML
processor

SAX parser

Write module

Management
backend
interface Embedded

system
application

SNMP
agent

Scheduler

XPath handler

XML/
SNMP

gateway

M
a
n
a
g
e
r

SNMP

information from the Management Backend Interface. The
Write Module updates the node value for the selected node
through the Management Backend Interface before replying to
the manager.

To send a notification to the XML-based manager, the
XML-based agent needs a Push Handler and HTTP Client
Engine as well as an XML Processor module. In addition, to
send periodic management information to the manager at a
fixed time with one schedule request, the XML-based agent
needs a Scheduler. The HTTP Client Engine delivers
asynchronous messages to the XML-based manager for
reporting alarms and distributing management data according
to the schedule. The Scheduler manages subscription
information and the schedule for the distribution of the
management information. Subscription information includes
the subscriber’s URL for receipt of subscriber information, a
managed object’s XPath expression (management item), and
schedule information containing the start time, the end time,
and the interval. The Push Handler receives the request from
the Scheduler and sends the scheduled data to the manager
through the HTTP Client at the scheduled time. The Push
Handler also sends a notification generated in the agent, which
is sent to the manager through the HTTP Client. If the XML-
based agent does not receive the ‘HTTP OK’ response to the
notification from the manager, the Push Handler resends the
notification message to the manager.

If an SNMP agent is also available in the managed network
device, the same Management Backend Interface can be used.
The XML-based manager communicates with the SNMP

agent through the XML/SNMP gateway.

3. XML/SNMP Gateway

Figure 4 illustrates the architecture of an XML/SNMP
gateway, and the HTTP request translation into SNMP requests
on the basis of the XPath/XUpdate expression in the request
message. The Request Handler in the gateway receives and
parses the XPath/XUpdate expression and delivers the request
to the gateway application. The XPath/XUpdate Handler in the
gateway application analyzes the expression and transfers a list
of target nodes addressed by the XPath expression or the result
for the XUpdate request.

Whenever the Trap Receiver receives a notification message
from the SNMP agent, it invokes the DOM event for the Trap
nodes in the DOM tree. For notification delivery, the HTTP
client in the gateway sends an asynchronous Post message
defined in the XML Trap Schema to the XML-based manager.
The XML-based manager interacts with the gateway through
the XML message over HTTP. The interaction translation and
the architecture of an SNMP/XML gateway are almost the
same as the reverse of those of the XML/SNMP gateway.

IV. Implementation and Experience

We implemented an XML-based network management
system (XNMS), an XML-based agent, and an XML/SNMP
gateway to validate our XML-based integrated management
system. The XNMS is used to manage one or more types of

452 Mi-Jung Choi et al. ETRI Journal, Volume 25, Number 6, December 2003

Fig. 4. Architecture of XML/SNMP gateway.

XML-based manager

HTTP response with
XML fragment

HTTP request

HTTP server

Request handler

XML fragment for a request

XPath/XUpdate handler

Request information from
HTTP GET/POST message

HTTP
client

HTTP message with
trap info.

DOM event for
notification

DOM

Trap node
Target node

DOM
interface call

SNMP stack Trap receiver

Update trap
contents

MIB variables
for a request

Information including “OID” for
SNMP request

XML/SNMP
gateway

SNMP response

SNMP request

SNMP agent

SNMP trap

network elements scattered throughout the world. In this
section, we explain our experience developing the XNMS and
XML-based agent using XML technologies. We used the
XML/SNMP gateway [20], [24], [25] approach for managing
existing SNMP agents. The reasons the gateway approach is
necessary are as follows:

– The configuration management in industry is already
changing to an XML-based management. Therefore,
having an XNMS to process XML is also necessary for
integrated management.

– Management systems need to support managing network
devices that are presently embedded with SNMP agents
and that utilize maximally existing SNMP agents.
Moreover, fault management and performance
management are already well performed by SNMP agents.
However, the SNMP agent reveals its limitation in the
configuration management with the SNMP Set operation.
Juniper and Cisco suggest a solution of efficient and
atomic transfer of configuration data by applying XML
related technologies.

– An SNMP agent is already embedded and manages most
network devices. It is almost impossible to change the
agents in devices that are already deployed. The latest
requests concerning network management encourage
developers to develop a new management system without

modifying the existing agent. XML technologies provide
many advantages in network management as mentioned in
section I, and we can develop new management systems
using XML technologies. Therefore, the gateway
approach needs an XML-based manager to manage
existing SNMP agents.

1. Implementation Details of XML-Based Manager

We use XML Schema to define the management
information. Figure 5, drawn using an editing tool of XML Spy
[44], shows the management information of XNMS defined in
an XML Schema format. XML Schema presented in dotted
lines in Fig. 5 represents optional management information and
the “0..∞” expression under the elements means that the
number of elements can range from zero to infinity. The basic
cardinality is one when nothing is specified. A dotted box with
no cardinality specification means an optional element, that is,
the number of this element is zero or one. The management
information of XNMS is divided into two parts: a server part
and a device part. The server part consists of the server
configuration, administrator lists, XML/SNMP gateway lists,
and device topology information.

The device part consists of device information, device
configuration, logging, and monitoring. XML Schema has
complex types containing elements and attributes and simple

ETRI Journal, Volume 25, Number 6, December 2003 Mi-Jung Choi et al. 453

Fig. 5. XML Schema for XNMS.

XNMS

Server

ServerConfig

AdminList

GatewayList

Topology

Device

0.. ∞

DeviceInfo

DeviceInfoType

DeviceIP

AdminID

AgentType

Gateway

AlertEmail

0..2
Description

DeviceConfiguration

Logging

0.. ∞
Monitoring

0.. ∞

types containing none. XML Schema supports 44 kinds of
built-in simple types, including string, integer, float, time, date,
etc. DeviceInfoType is defined as a complex type and the type
of DeviceInfo is set to DeviceInfoType. Each element, such as
DeviceIP, AdminID, or AgentType, has its own data type. We
add at least one attribute to the device information as a primary
key for searching. DeviceInfoType has the attribute string type
and DeviceID unique key. If the type of an agent (AgentType)
is an XML-based agent, the information from Gateway is not
necessary.

The DeviceConfiguration section is defined as XML
Schema converted from the MIB definition of each device.
This is for consistency of management information between
the XML-based manager and the SNMP agent interacting
through the XML/SNMP gateway. We translate MIB II to
XML Schema for basic management information. If a new
device embedding an SNMP agent is added to XNMS, our
MIB2XML translator [20] converts the private MIB definition
to XML Schema and the translated XML Schema is added to
XML Schema of XNMS as a child element of
DeviceConfiguration in Fig. 5.

We considered three methods for efficient interaction
between XML-based manager and the XML/SNMP gateway.
We adopted the HTTP-based translation among interaction
approaches [24], [25] between the XNMS and the
XML/SNMP gateway. This method enables one to easily

define complex request messages and improve communication
efficiency over HTTP, which is the most common approach to
exchange XML documents.

In the HTTP communication between XNMS and the
gateway or between XNMS and the XML-based agent, we
define XML Schema for an HTTP Get/Post message. XNMS
requests management information using the HTTP Get request
message. An HTTP Get request has a parameter named
“XQuery” to describe the detailed request. Figure 6 shows the
XML Schema for “XQuery” [45] expression and Table 1
shows its example. XML Schema includes definitions of
elements, which are “DeviceIP” for device identification,
“XPath” for addressing portions of management information,
and several elements for SNMP communications. If the agent
is an XML-based agent, the gateway information is not
necessary, as the XML-based manager directly connects to the
XML-based agent.

The XNMS sends an HTTP Post request to insert, delete,
and update management information. An HTTP Post message
contains request details in its message body. We use XUpdate
[46] expression for HTTP Post message content. An update in
the XUpdate language is expressed as a well-formed XML
document. XUpdate uses the expression language defined by
XPath. These XPath expressions are used in XUpdate for
selecting nodes for processing afterwards. An update is
represented by a “Modifications” element in an XML

454 Mi-Jung Choi et al. ETRI Journal, Volume 25, Number 6, December 2003

Fig. 6. XML Schema for “XQuery” in HTTP Get.

XQuery

XQuery format for HTTP
get request message

QueryList

1.. ∞

DeviceIP

Gateway

XPath

GatewayIP

ReadCommunity

SNMPVersion

MibName

Table 1. XML example for “XQuery” in HTTP Get.

Between XNMS and the XML/SNMP gateway Between XNMS and the XML-based agent

http://XNMS/monitoring.jsp?XQuery=<XQuery> <QueryList>
<DeviceIP >141.223.82.121</DeviceIP>
<Gateway><GatewayIP>141.223.82.56</GatewayIP>
<ReadCommunity>public</ReadCommunity>
<SNMPVersion>0</SNMPVersion>
<MibName>RFC1213-MIB</MibName></Gateway>
<XPath>//interfaces</XPath></QueryList></XQuery>

http://XNMS/monitoring.jsp?XQuery=<XQuery><QueryList>
<DeviceIP >141.223.82.122</DeviceIP>
<XPath>//interfaces</XPath></QueryList></XQuery>

document. An asynchronous Trap message from an SNMP
agent is sent through the HTTP Post message via the
XML/SNMP gateway. The gateway generates an XML
document which contains the Trap message, and delivers it to
the manager using an HTTP Post message.

To store management data for later analysis, a database is
necessary. There are two practical DB formats for storing and
retrieving XML content: native XML databases and relational
databases (RDBMS) [47]. An RDBMS does not support up-to-
date XML technologies such as XPath and XUpdate.
Therefore, an approach is required to map the relational DB or
move it to an XML document and schema. Although many
RDBMSs support the storage of XML documents, the
mapping of XML documents to relational models is not only
difficult but often results in incompatible schema. Moreover,
mapping the structure of the XML document to a relational
schema can heavily degrade performance because it always
needs to parse the XML document.

The native XML DB stores the data structured as XML
without having to translate the data to a relational or object
database structure. This is especially valuable for complex and
hierarchical XML structures that would be difficult or
impossible to map to a more structured database. Therefore, we
use a native XML database instead of a traditional RDBMS.
First, we need to know the definition of collection and
document in the native XML DB. The collection is a container

in which the XML document is stored. The document is an
intact XML document used in a collection. Compared to a
relational database, the collection is roughly equivalent to a
table and the document is the same as a row in the table. Any
XML document can be added to a collection regardless of
schema. We make collections in accordance with the XML
Schema in Fig. 5. We make an XNMS collection, which
contains the Device collection, which in turn contains the
DeviceInfo collection in hierarchical order, as shown in Table 2.
The cardinality of the AlertEmail element shown in Fig. 5 is 0
to 2, that is, the number of AlertEmail elements can be between
zero and two. The device information for the SNMP agent
needs the gateway information. However, the device
information for the XML-based agent does not include the
gateway information. Therefore, the cardinality of Gateway
element is zero or one. The left column in Table 2 is for the
device equipped with an SNMP agent that includes two
AlertEmail and one Gateway items of information. The right
column of the device is equipped with an XML-based agent
that includes one AlertEmail and no Gateway information.

We can query DeviceInfoList using the same pattern of
XPath in the native XML DB. We divide collections in
minimum size related to the same information for fast DB
operation. The native DB provides the unique key of each
document in the collection, which makes it easier to directly
access the specified document. Therefore, we can easily

ETRI Journal, Volume 25, Number 6, December 2003 Mi-Jung Choi et al. 455

Table 2. XML document of DeviceInfo.

Device equipped with an SNMP agent Device equipped with an XML- based agent
XNMS/Device/DeviceInfo
<? xml version= “1.0” ?>
<DeviceInfoList DeviceID= “device1” >
<DeviceIP>141.223.82.121</DeviceIP>
<AdminID>mjchoi</AdminID>
<AlertEmail>mjchoi@postech.ac.kr</AlertEmail>
<AlertEmail>siwa@postech.ac.kr</AlertEmail>
<AgentType>1 (SNMP agent)</AgentType>
<Gateway >
<GatewayIP>141.223.82.77</GatewayIP>
<ReadCommunity>public</ReadCommunity>
<WriteCommunity>private</WriteCommunity>
<MIBName>RFC1213-MIB</MIBName>

</Gateway>
<Description>Linux Machine</Description>

</DeviceInfoList>

XNMS/Device/DeviceInfo
<? xml version= “1.0” ?>
<DeviceInfoList DeviceID= “device2” >
<DeviceIP>141.223.82.122</DeviceIP>
<AdminID>mjchoi</AdminID>
<AlertEmail>meanie@postech.ac.kr </AlertEmail>
<AgentType>2 (XML-based agent) </AgentType>
<Description>IP Sharing Device </Description>

</DeviceInfoList>

retrieve, update, and delete documents using an XPath
expression. DB schema is consistent with XML Schema in a
native XML DB, and storing management information to the
DB is simple and there is no overhead for parsing the XML
document. Therefore, we can easily process XML data using
the native XML DB, which results in fast and easy
development of the XNMS.

DOM [5] is the means of accessing and manipulating XML
documents. DOM supports the reconstruction of XML
documents, access to any part of the documents, and the
method of manipulations, additions, and deletions to the
document. We can analyze management data of an XML
document format using the DOM interface. We use the
fundamental interfaces of the DOM core interface [5]: Node,
Document, DOMImplementaion, NodeList, NamedNodeMap,
Attr, and Element.

To access a part of an XML document, the DOM tree of the
entire XML document is loaded in memory. This wastes
memory and CPU resources and requires much processing
time. Therefore, we make an effort to save resources. We use
the DocumentFragment interface for updating an XML
document. This interface provides a method to update a small
portion of the document without constantly updating the
NodeLists and NamedNodeMaps associated with the entire
document. Updating the NodeLists can significantly slow
down execution. As mentioned previously, we use a native
XML DB to store management information. This reduces the
manipulation of XML documents using the DOM interface for
inserting management information to the DB, because the
XML document can be directly inserted into the native XML
DB. When an analysis is requested, we extract the data from

the DB by filtering and scoping using the DOM interface and
calculating the data.

After the management information is analyzed, the analysis
result is presented to administrators. We adopted XSLT [8] to
accomplish the XNMS presentation. XSLT is an XML-based
language that enables us to transform one class of XML
document to another. An XML document can be transformed
so it can be rendered on a variety of formats fitting different
display requirements.

We classify types of presentation in XNMS. Static
information such as XNMS server configuration data, which is
not specific to managed devices, can be rendered using pre-
defined XSLT. Another type of presentation is to generate a
dynamic web page for device configuration, which has various
items and styles to present according to devices and their MIBs.

XNMS maintains XML Schemas for the managed devices,
and also XSL templates for the XML documents conforming
to XML Schema. The XSLT template for each MIB is
generated by the XSLT Generator of the XML/SNMP
Gateway, and downloaded to XNMS whenever the MIB is
translated. Table objects defined in the MIB is presented as
HTML [48] table view using the template. XNMS reduces the
in-line code to control presentation logic and HTML code for
work iterating whenever a device is added or an MIB module
is recompiled.

2. Implementation Details of XML-Based Agent

The main function of the XML-based agent is to retrieve and
update management information according to the manager’s
request of a Get/Set operation. The XML-based agent also
delivers periodic monitoring data to the manager by

456 Mi-Jung Choi et al. ETRI Journal, Volume 25, Number 6, December 2003

performing the scheduler according to the manager’s
scheduling request. Figure 7 illustrates the function call for the
flow of the Get/Set process of the XML-based agent.

The process of the Get operation in XML-based agent is as
follows. The Get request from the manager calls the Get
module through Management Script with two parameters:
XML filename and XPath expression. The value of XML
filename is used as the parameter of the xmlOpen() function
for opening the appropriate XML document; the value of
XPath is the parameter of the getXpath() function, which
returns the structure type of XPath to utilize in the next phase.
The XML document from xmlOpen() and XPath returned
from getXpath() input into the parseXml() function as
parameters. The parseXml() parses the XML document
through the XPath grammar. The real management value is
retrieved through the call of Management Backend Interface;
then the XML document is updated with this value using the
setXml() function. The parsed XML document is sent to
returnXml() and backtracks to Management Script as string
format. Finally, the xmlClose() function closes the previously
opened XML document.

The process of the Set operation is almost equal to the Get
operation. The Set module opens the XML document and
retrieves the specific XML document part by applying an
XPath expression as a Get operation, then modifies the XML
document calling setXml(), and updates the real value through
Management Backend Interface. Afterwards, it generates the
XML document from the result of the Set operation and calls
returnXml() function. The returned result to Management
Script is the response of the Set operation, ‘HTTP OK’
message.

In Fig. 7, the getXpath() function is the XPath Handler
module processing XPath. Currently, XPath supports various

syntaxes. However, if the XPath expression is complex, the
processing time is slow [49], and the XPath Handler
supporting full XPath grammar [50] is heavy. This does not
meet the requirements of low resource utility. Therefore, we
implemented a part of XPath grammar sufficient for accessing
the XML document of management information in the XML-
based agent. Moreover, we implemented the XPath Handler to
access the specific management information applying XPath
expression during the parsing without loading the XML
document into memory. Table 3 shows the XPath grammars that
we implemented in our XML-based agent. We implemented
the XPath Handler considering the extensibility supporting
more XPath syntaxes. It is desirable to extract management
information using simple XPath expression by considering the
processing time.

In Fig. 7, the parseXml() function, which reads the XML
document in sequential access and applies XPath expression, is
the core module of the SAX Parser. This parses the XML
document from the root element to its child element, retrieves
the element name and attributes, and compares the retrieved
values to XPath expression processed by the getXpath()
function; then if the comparison result is equal, the values are
sent to the next function. The setXml() function is for the Write
Module. In the case of a Set request, if the Set operation needs
to update the value, this function modifies the XML
document after parsing the document that applies the XPath
expression.

Figure 8 describes the process of the Scheduler for delivering
periodic data to the manager at the scheduled time and the Trap
for sending a notification to the manager. If the Scheduler
receives a scheduling request from the manager, it updates the
job list file. The Scheduler processes the job with thread
functions. In the initial start, the Scheduler runs the getJob()

Fig. 7. Flow of get/set operations.

XML-based
manager

HTTP

EWS
(HTTP
server

engine)
HTTP
client

engine

Management
script

xmIOpen()
XML

filename

getXpath()XPath

Get/Set

parseXmI()

XML
document

Modified
XPath

returnXmI() setXmI()
Management

data (set)

Management
backend
interface

Parsed XML
document

XML
document

xmIClose()
: Get
: Set

Management
data (get)

XML
document

HTTP OK

ETRI Journal, Volume 25, Number 6, December 2003 Mi-Jung Choi et al. 457

Table 3. Supported XPath grammar in XML-based agent.

Grammar Explanation Example

/ The basic XPath syntax similar to
file system addressing /AAA/BBB

//
All elements in the document
which fulfill following criteria are
selected

//BBB

* All elements located by
proceeding path //*

@ Attributes are specified by @
prefix //@id

[] Filter BBB[@id='b1']

= Comparative operator BBB[@id='b1']

| Equals to logical OR //AAA | // BBB

& Equals to logical AND //AAA & // BBB

function, and this function reads the job list file and retrieves the
job contents. As mentioned in the scheduler part in section III.2,
the job list file includes subscriber information, management
items, and schedule information containing start time, end time,
and interval. The checkJob() function receives the number of
jobs and the job list from getJob() and compares the existing
threads information to the new job list. According to the
comparison result, the checkJob() generates the new job thread
calling insertJob(), or destroys the existing job thread calling
deleteJob(). The generated thread having the same time
interval as the parameter checks the schedule calling
timerHandler() and runs the runWget() function at the
scheduled time. The runWget() function calls the Push Handler,

then the processed management information is sent to the
manager through an HTTP Client Engine called Wget [51]. A
notification from the Management Backend Interface is sent to
genXmlTrap() function in the Trap module. This function
generates an XML document containing the trap information
and calls the runWget() function. Trap information is delivered
to the manager by this mechanism.

V. Validation and Performance Test

We implemented the XNMS on a Linux OS using Java
language. The XML packages used in the XNMS are mostly
from the Apache project [52]. We used the Apache Web
server and OpenSSL [53] to communicate in the secure
mode of HTTPS. We used Xerces [54] as a DOM parser and
Xalan [55] as an XPath/XSLT processor. We used Xindice
[56], a native XML DB, to store the XML document of
management data. These all belong to the Apache project
and are Java-based. We used Innovation’s HTTP Client
V0.3-3 [57] as the HTTP Client, which is also Java-based. A
more detailed description of the implementation of the
XML/SNMP gateway is found in our previous papers [20],
[24], [25].

We implemented an XML-based agent to manage an IP
sharing device based on the design presented in section III.2.
Moreover, we focused on the implementation of an efficient
and lightweight XML-based agent by considering such
requirements as low resource utility (CPU usage and memory
size). In addition, for portability to equip any type of embedded
system, we used the C programming language throughout
agent implementation and developed components for each
module. To control the access of management information,

Fig. 8. Flow of Trap/Schedule operations.

XML-based
manager

HTTP

EWS
(HTTP
server

engine)
HTTP
client

engine

Management
script

Job list
file

Scheduler

getJob()

No. of
jobs

checkJob()

deleteJob()

insertJob()

timerHandler()

getData()

Management
data

Management
backend
interface

runWget()

genXmITrap()

XML
document

XML
document

Trap
information

Trap

Push
handler

458 Mi-Jung Choi et al. ETRI Journal, Volume 25, Number 6, December 2003

Fig. 9. Examples of XNMS user interface.

(a) Get/Set (MIBII-System Group) (b) Log analysis from trap notification

(c) Configuration of periodic monitoring (d) Result of monitoring analysis

access to the XML-based agent is permitted through
authentication with ID and password in the initial contact. The
IP sharing device equipped with our XML-based agent runs on
an embedded Linux based on the linux2.2.13-7 kernel using
Motorola’s MPC850DE processor [58] with a 16 MB ROM.
We used a powerpc-linux-gcc compiler.

Using the XNMS, an administrator has a unified
management interface for multiple devices. Figure 9 shows
examples of the XNMS user interface. Figure 9(a) shows the
information of the system group of MIB II. First, one checks
the device ID in the left tree and clicks the Configuration
submenu of the Device Management menu in the upper frame
in the Fig. 9 (a). The flow of management information of Fig. 9
(a) is the first flow (Get/Set flow) mentioned in section IV.1.

Figure 9(b) shows the Trap information received from all
devices. The flow of this information is the second flow (Trap
flow) mentioned in section IV.1. Figure 9(c) shows the current
setting of periodic monitoring. The two devices are in the
process of monitoring, and the others have finished the periodic
monitoring. If you check the device check-button in the tree
panel and click the “Apply” button in Fig. 9(c), you get what is
shown in Fig. 9(d). Figure 9(d) shows the monitoring analysis
result of selected devices. The graph shows the in/out
bandwidth of the ethernet interface during a specified time
period. The flow of management information of Fig. 9(d) is the
third flow mentioned in section IV.1.

The management functionalities of the XNMS can be easily
and quickly developed from the support of the standard API

ETRI Journal, Volume 25, Number 6, December 2003 Mi-Jung Choi et al. 459

and the database. We were able to easily develop analysis
management functionalities using standard DOM interfaces.
DOM interface results in fast and easy development of the
XNMS and saves development time and cost. Building a user
interface composed of a number of HTML pages is repetitive
and time-consuming work in an application development. We
reduced a significant amount of designing Web-MUI using
reusable XSLT and generated an XSLT template from an MIB
definition. We used freely-available codes to process the XML.

We verify the performance [59] of our XML-based agent by
comparing it with the SNMP agent on the same IP sharing
device. We compare resource utilities, such as CPU load, run-
time memory size, and executable code size. We also compare
the generated network traffic [60] of each agent between the
manager and the agent. Moreover, we measure how much
network traffic is reduced by a scheduling and push
mechanism for periodic monitoring. Finally, the processing
time of our XML-based agent against the traditional SNMP
agent is measured with the response time of Get/Set requests
between the manager and the agent. We also measure the
network traffic and response time between the XML-based
manager and SNMP agent on the IP sharing device through the
XML/SNMP gateway.

Table 4 compares the SNMP agent and the XML-based
agent in terms of CPU load, run-time memory usage, and
executable code size. This information is discovered by the
Linux commands, such as top, cpuload, etc., and the status data
in the proc directory generated during the run-time of the
process daemon. Both the XML-based agent and the SNMP
agent provide SNMP MIB II information. The SNMP agent
extends the Net-SNMP [22] and supports only SNMPv1.

From Table 4, our XML-based agent takes more resources
than the SNMP agent. However, the increase is insignificant.
While the XML parser generally consumes many resources
and may be insufficient in application to the embedded
systems, our XML-based agent is lightweight enough to be

Table 4. Resource utility of the SNMP and XML-based agent.

Agent CPU load Run-time
memory usage

Executable
code size

SNMPv1 17 % 600 kB 400 kB

XML-based 20 % 700 kB 550 kB

equipped in network devices and perform network
management functionality.

Table 5 shows the network traffic of each agent between the
SNMP agent and manager, between the XML-based agent and
manager, and between the SNMP agent and XML-based
manager through the XML/SNMP gateway in terms of system
group and interface group of MIB II information. We captured
packets and those sizes between each manager and agent by
the network traffic monitoring tool, Ethereal [61]. The network
traffic of the XML/SNMP gateway is the sum of traffic
between the XML-based manager and the XML/SNMP
gateway and between the XML/SNMP gateway and the
SNMP agent.

In the case of requests for one object in Table 5, we can
easily determine the smaller size of the Get request message
and response message of the SNMP agent because it is aimed
to serve the network management protocol. However, the
XML-based agent uses the HTTP protocol, so it increases
network traffic for each information access over the SNMP.
Conversely, for a grouped request, the XML-based agent
produces less network traffic than the SNMP agent because the
SNMP agent requests several GetNext operations and receives
responses for every node, while the XML-based agent retrieves
the entire system group or interfaces group information in one
request using an HTTP message. Moreover, the difference is
outstanding in the case of the interfaces group because it
includes more managed objects. Most cases of Get or Set

Table 5. Message size of Get.

Get request message (bytes) Get response message (bytes)
Management property

SNMP XML-based XML/SNMP gateway SNMP XML-based XML/SNMP gateway

sysDescr 82 238 396 (314 + 82) 145 240 401 (145 + 256)

sysContact 82 240 388 (316 +82) 103 190 309 (103 + 206)

system Group 572 241 889 (317 + 572) 722 440 1178 (722 + 456)

inOctets (2 interfaces) 169 240 485 (316 + 169) 175 252 443 (175 + 268)

outOctets (2 interfaces) 169 241 486 (317 + 169) 176 256 448 (176 + 272)

interfaces Group 3720 241 4037 (317 + 3720) 3818 1654 5488 (3818 + 1670)

460 Mi-Jung Choi et al. ETRI Journal, Volume 25, Number 6, December 2003

operations for management information request multiple data
at one time. Therefore, the XML-based agent produces less
network traffic than the SNMP agent in this case.

If the XML-based manager manages the SNMP agent
through the XML/SNMP gateway, the network traffic is the
sum of traffic between the XML-based manager and the
XML/SNMP gateway and between the XML/SNMP gateway
and the SNMP agent. The message between the XML-based
manager and the gateway adds the MIB information, such as
MIB name and community name to the message between the
XML-based manager and the XML-based agent. The network
traffic between the XML-based manager and XML/SNMP
gateway can be reduced using a compression mechanism of
HTTP. Also, the XML/SNMP gateway can be implemented as
an internal gateway, which implies the XML-based manager
and XML/SNMP gateway run on a single system. This internal
gateway does not generate network traffic. However, the
computing overhead for implementing the manager and the
gateway in a single system is complex. We compared the
gateway performance of three different methods from the
viewpoint of network traffic and response time in our previous
paper [25], [62].

Regarding in/out octets to monitor periodic network traffic
for devices with two interfaces, the SNMP creates a request
message of approximately 169 bytes to each in/out octet
information and response message of approximately 175 bytes.
However, the XML-based agent receives a request message of
600 bytes to set schedule information in the initial time and
sends only a message of 252 bytes periodically to the manager.
If the period is shorter and the manager has many devices to
monitor, the scheduler mechanism in the XML-based agent

achieves a more effective network traffic reduction. The
manager can reduce processing overhead to generate Get
request messages for periodic monitoring.

Table 6 shows the message size of the Set operation. The Set
response message size of the SNMP is the same as the Set
request message size of the SNMP. The response message of
XML-based is the “HTTP OK” message. The Set operation is
processed by an HTTP post operation. The size of the post
operation is longer than that of the Get operation in HTTP. As
the Get operation, the Set operation can reduce network traffic
when there is a request for multiple data all at once.
Table 7 shows the message of the Trap operation. The SNMP
agent sends a notification to the manager, but the manager does
not respond to the notification to the agent. Therefore, the Trap
response message size of the SNMP is 0. However, this can
cause a loss in important notifications. The notification
message size of the XML-based agent is longer than that of the
SNMP agent, and the XML-based manager generates the
response message. However, the network traffic generated by
the Trap message is scarce. The response message of the
XML-based manager guarantees the safe delivery of the
important Trap messages. For communication through the
XML/SNMP gateway, the XML/SNMP gateway generates an
XML-formatted Trap message from the SNMP Trap message,
sends the message to the XML-based manager, and receives
the response from the manager.

Table 8 shows the response time of each MIB object. The
response time of the Get/Set request is measured by the time()
function call from the request initiation to response reception.
The XML-based agent takes more time than the SNMP agent
for accessing each leaf node in the system group in MIB II. For

Table 6. Message size of Set.

Set request message (bytes) Set response message (bytes)
Management property

SNMP XML-based XML/SNMP gateway SNMP XML-based XML/SNMP gateway

sysDescr 104 350 550 (446 + 104) 104 210 330 (226 + 104)

sysContact 130 358 586 (456 + 130) 130 210 356 (226 + 130)

Table 7. Message size of Trap.

Trap notification message (bytes) Trap response message (bytes)
Management property

SNMP XML-based XML/SNMP gateway SNMP XML-based XML/SNMP gateway

coldStart trap 110 450 560 (110 + 450) 0 210 210

linkDown trap 127 520 647 (127 + 520) 0 210 210

ETRI Journal, Volume 25, Number 6, December 2003 Mi-Jung Choi et al. 461

retrieving group values at once, the SNMP agent takes more
time than the XML-based agent. The response time through
the XML/SNMP gateway adds the gateway processing time to
the SNMP communication. The response time of the Set
request is almost the same as that of the Get request. These data
do not show a significant difference in the response time
between the SNMP agent and the XML-based agent.
Therefore, the XML-based agent achieves a performance good
enough for processing XML documents. Also, the processing
overhead of the XML/SNMP gateway approach is not large
compared with the direct communication between the manager
and agent.

Table 8. Response time of Get request.

Response time (ms) Management
property SNMP XML-based XML/SNMP gateway

sysDescr 40 50 80

system Group 160 140 250

interface Group 980 800 1250

As a result, the XML-based agent is small and efficient as

the SNMP agent in terms of resource utilization and processing
time. Also, the XML/SNMP gateway approach does not
generate the extreme processing overhead in terms of response
time. In addition, the XML-based agent gives outstanding
network traffic reduction to access much information in a
limited time.

The XNMS solves the scalability problem in the manager’s
processing capacity because the overhead for processing
management functionality is distributed to the XML/SNMP
gateway. If the number of agents to be managed increases, we
can increase the number of gateways. The architecture of the
management system is hierarchical and the gateway acts as a
management system and the XNMS acts as the manager of
managers. According to the response time, the gateway
efficiently processes the translation, and quickly delivers the
message between the manager and agent.

VI. Concluding Remarks

In this paper, we presented a survey of work performed in
the area of XML-based network management. We also
proposed an XML-based integrated network management
system and explained our gateway approach for managing the
existing legacy SNMP agent that uses the advantages of XML
technologies. For validation, we designed and implemented an
XNMS for managing network devices based on the proposed

manager and gateway architecture. Our XNMS fully utilizes
XML technologies, such as XML Schema, DOM, XPath,
XQuery, and XSLT, to perform network management. We
were able to reduce the development cost of the management
system through the support of the standard API for processing
XML documents. We also developed an XML-based agent for
achieving a pure XML-based network management. We
verified the functionality of our XML-based agent by applying
it to a commercial Internet sharing device.

The performance result showed almost the same
performance and resource usage compared with the existing
management paradigm, the SNMP agent. Moreover, the
XML-based agent is more efficient than the SNMP agent in
terms of network traffic. The XML/SNMP gateway approach
for integrated network management generates more network
traffic and processing time. The network traffic overhead of the
XML/SNMP gateway is unavoidable. However, the
processing overhead of the XML/SNMP gateway approach is
not large compared with the direct communication between the
manager and agent.

We are actually monitoring our campus gigabit network
using our management system. We are monitoring Cisco
backbone routers and switches. The network devices we are
monitoring comprise about two-dozen devices. So far, we have
not run into any problems. We plan to increase the number of
devices to be managed and plan to report the result in our
future work. We will also validate the scalability and
extensibility of our systems. Finally, we plan to extend
management operations to web services by using WSDL [10]
and SOAP [11].

References

[1] J. Case, M. Fedor, M. Schoffstall, and J. Davin (Eds.), “A Simple
Network Management Protocol (SNMP),” RFC 1157, IETF, May
1990.

[2] F. Strauss and T. Klie, “Towards XML Oriented Internet
Management,” Proc. IFIP/IEEE Int’l Symp. on Integrated
Network Management (IM 2003), Colorado Springs, USA, Mar.
2003, pp.505-518.

[3] Tim Bray, Jean Paoli, and C.M. Sperberg-McQueen, “Extensible
Markup Language (XML) 1.0,” W3 Recommendation REC-xml-
19980210, Feb. 1998.

[4] W3C, “XML Schema Part 0,1,2,” W3 Consortium
Recommendation, May 2001.

[5] W3C, “Document Object Model (DOM) Level 1 Specification,”
W3C Recommendation, Oct. 1998.

[6] W3C, “XML Path Language (XPath) Version 2.0,” W3C
Working Draft, Apr. 2002.

[7] W3C, “Extensible Stylesheet Language (XSL) Version 1.0,” W3C
Recommendation, Nov. 2000.

[8] W3C, “XSL Transformations Version 1.0,” W3C

462 Mi-Jung Choi et al. ETRI Journal, Volume 25, Number 6, December 2003

Recommendation, Nov. 1999.
[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk Nielsen, L. Masinter, P.

Leach, and T. Berners-Lee, “Hypertext Transfer Protocol -
HTTP/1.1,” RFC 2616, IETF HTTP WG, June 1999.

[10] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S.
Weerawarana, “Unraveling the Web Services Web: An
Introduction to SOAP, WSDL, and UDDI,” IEEE Internet
Computing, vol. 6, no. 2, Mar.-Apr. 2002, pp.86-93.

[11] W3C, “SOAP Version 1.2 Part 0: Primer,” W3C Working Draft,
Dec. 2001.

[12] M.J. Choi, H.T. Ju, and J.W. Hong, “Towards XML and SNMP
Integrated Network Management,” Proc. of the Asia-Pacific
Network Operations and Management Symp., Jeju, Korea, Sept.
2002, pp. 507-508.

[13] Network Management Research Group, http://www.ibr.cs.tu-
bs.de/projects/nmrg/.

[14] OASIS Management Protocol TC, “Management Protocol
Specification,” http://xml.coverpages.org/managementProtocol.html.

[15] Avaya Labs., XML based Management Interface for SNMP
Enabled Devices, http://www.research.avayalabs.com/user/
mazum/Projects/XML/.

[16] P. Shafer and R. Enns, JUNOScript: An XML-based Network
Management API, http://www.ietf.org/internet-drafts/draft-shafer-
js-xml-api-00.txt, Aug. 27, 2002.

[17] Cisco Systems, Cisco Configuration Registrar, http://www.cisco.
com/univercd/cc/td/doc/product/rtrmgmt/ie2100/cnfg_reg/index.
htm.

[18] J.P. Martin-Flatin, Web-Based Management of IP Networks and
Systems, Ph.D. Thesis, Swiss Federal Institute of Technology,
Lausanne (EPFL), Oct. 2000.

[19] Frank Strauss et al, “A Library to Access SMI MIB Information,”
http://www.ibr.cs.tu-bs.de/projects/libsmi/.

[20] J.H. Yoon, H.T. Ju, and J.W. Hong, “Development of SNMP-
XML Translator and Gateway for XML-based Integrated
Network Management,” Int’l J. of Network Management (IJNM),
vol. 13, no. 4, July-Aug. 2003, pp. 259-276.

[21] S. Mazumdar, CORBA/SNMP Gateway, http://www1.bell-
labs.com/project/CorbaSnmp/.

[22] NET-SNMP, http://net-snmp.sourceforge.net/.
[23] First Peer, Inc., XML-RPC for C and C++, http://xmlrpc-

c.sourceforge.net/.
[24] Y.J. Oh, H.T. Ju, M.J. Choi, and J.W. Hong, “Interaction

Translation Methods for XML/SNMP Gateway,” Proc. DSOM
2002, Montreal, Canada, Oct. 2002, pp. 54-65.

[25] Y.J. Oh, H.T. Ju, and J.W. Hong, “Interaction Translation Methods
for XML/SNMP Gateway Using XML Technologies,” Proc. of
the Asia-Pacific Network Operations and Management Symp.,
Jeju, Korea, Sept. 2002, pp. 11-22.

[26] H.T. Ju, M.J. Choi, S.H. Han, Y.J. Oh, J.H. Yoon, H.J. Lee, and J.
W. Hong, “An Embedded Web Server Architecture for XML-
based Network Management,” Proc. IEEE/IFIP Network
Operations and Management Symp. (NOMS 2002), Florence,
Italy, Apr. 2002, pp.1-14.

[27] OASIS, Universal Description, Discovery and Integration
(UDDI), http://www.uddi.org/.

[28] Organization for the Advancement of Structured Information
Standards, http://www.oasis-open.org/.

[29] WebMethods, Inc. and Hewlett-Packard Company, Open
Management Interface Specification 1.0, http://www.oasis-
open.org/committees/mgmtprotocol/Docs/OMISpecification_1.0r
ev1_OASIS.pdf.

[30] WBEM, WBEM Initiative, http://www.dmtf.org/wbem/.
[31] DMTF, Common Information Model (CIM), http://www.

dmtf.org/standards/standard_cim.php.
[32] DMTF, Specification for the Representation of CIM in XML

Version 2.0, DMTF Specification, July 1999.
[33] DMTF, “Specification for CIM Operations over HTTP Version

1.0,” DMTF Specification, Aug. 1999.
[34] SyncML Initiative, http://www.syncml.org/.
[35] M. Wasserman, Concepts and Requirements for XML Network

Configuration, Internet-Draft, http://www.ietf.org/internet-drafts/
draft-wasserman-xmlconf-req-00.txt, June 2002.

[36] S. Hollenbeck et al, Guidelines for the Use of XML within IETF
Protocols, http://www.ietf.org/internet-drafts/draft-hollenbeck-ietf-
xml-guidelines-06.txt, Aug. 2002.

[37] IETF, Network Configuration (Netconf), http://www.ietf.org/
html.charters/netconf-charter.html.

[38] ITU-T Recommendation X.3030, Telecommunications Markup
Language (tML) framework, May 2000.

[39] W. K. Hong, “An ATM Network Management System for Point-
to-Multipoint Reservation Service,” ETRI J., vol. 24, no. 4, Aug.
2002, pp.299-310.

[40] M.J. Choi, H.T. Ju, H.J. Cha, S.H. Kim, and J.W.K. Hong, “An
Efficient and Lightweight Embedded Web Server for Web-based
Network Element Management,” Proc. IEEE/IFIP Network
Operations and Management Symp. (NOMS 2000), Hawaii,
USA, Apr. 2000, pp. 187-200.

[41] W3C, “Simple API for XML Version 2.0,” WC3
Recommendation, Nov. 1999.

[42] Devsphere, XML Parsing Benchmark, http://www.devsphere.
com/xml/benchmark/index.html.

[43] Nazmul Idris, Should I Use SAX or DOM, http://developerlife.
com/saxvsdom/default.htm, May 1999.

[44] Altova, XML Spy, http://www.xmlspy.com.
[45] W3C, “XQuery 1.0: An XML Query Language,” W3C Working

Draft, Apr. 2002.
[46] XML:DB, “Xupdate,” Working Draft - 2000-09-14, http://www.

xmldb.org/xupdate/xupdate-wd.html.
[47] Ronald Bourret, XML and Databases, Sept. 1999, http://www.

rpbourret.com/xml/XMLAndDatabases.htm/.
[48] D. Raggett, A. Le Hors, and I. Jacobs, “HTML 4.01 Specification,”

IETF HTML WG, http://www.w3.org/TR/html401, Dec. 1999.
[49] ZVON Org, XPath Tutorial, http://www.zvon.org/xxl/XPathTutorial/

General/examples.html.
[50] Georg Gottlob, Christoph Koch, and Reinhard Pichler, “XPath

Query Evaluation: Improving Time and Space Efficiency,” Proc.
19th Int’l Conf. on Data Eng. (ICDE 2003), Bangalore, India, Mar.
2003.

[51] GNU Wget, http://www.wget.org/.
[52] Apache XML Project, http://xml.apache.org/.

ETRI Journal, Volume 25, Number 6, December 2003 Mi-Jung Choi et al. 463

[53] Apache-SSL, http://www.apache-ssl.org/.
[54] Apache XML Project, Xerces Java Parser, http://xml.

apache.org/xerces-j/.
[55] Apache XML Project, Xalan Java, http://xml.apache.org/xalan-j/.
[56] Apache XML Project, Xindice, http://xml.apache.org/xindice/.
[57] Innovation, HTTPClient Version 0.3-3, http://www.innovation.

ch/java/HTTPClient/.
[58] Motorola, MPC850: PowerQUICC™ Integrated Comm. Processor,

http://e-
www.motorola.com/webapp/sps/site/prod_summary.jsp?code=
MPC850.

[59] Y.H. Hwang, “A Performance Analysis of TMN Systems Using
Models of Networks of Queues, Jackson’s Theorem and
Simulation,” ETRI J., vol. 24, no. 5, Oct. 2002, pp. 381-390.

[60] D.H. Heo, “The Effects of Management Traffic on the Local Call
Processing Performance of ATM Switches Using Queue Network
Models and Jackson’s Theorem,” ETRI J., vol. 25, no. 1, Feb.
2003, pp. 34-40.

[61] Ethereal, http://www.ethereal.com/.
[62] Y.J. Oh, Interaction Translation Methods for XML/SNMP

Gateway, Master Thesis, POSTECH, Dec. 2002.

Mi-Jung Choi received her BS degree in
computer science from Ewha Womans
University in 1998, MS degree in computer
science and engineering from Pohang
University of Science and Technology
(POSTECH) in 2000. Currently, she is a PhD
candidate in the Department of Computer

Science and Engineering, POSTECH. Her research interests include
XML-based network management and policy-based network
management. She is a member of IEEE and KNOM.

James W. Hong is an associate professor in the
Dept. of Computer Science and Engineering,
POSTECH, Pohang, Korea. He has been with
POSTECH since May 1995. Prior to joining
POSTECH, he was a research professor in the
Dept. of Computer Science, University of
Western Ontario, London, Canada. Dr. Hong

received the BS and MS degrees from the University of Western
Ontario in 1983 and 1985, respectively, and the PhD degree from the
University of Waterloo, Waterloo, Canada in 1991. He has been very
active as a participant, program committee member and organizing
committee member for IEEE CNOM sponsored symposiums such as
NOMS, IM, DSOM and APNOMS. For the last few years, he has
been working on various research projects on network and systems
management, which utilize Web, Java, CORBA and XML
technologies. He is IEEE Comsoc CNOM Vice Chair and KICS
KNOM Chair. His research interests include network and systems
management, traffic monitoring and analysis, and security
management. He is a member of IEEE, KICS, KNOM and KISS.

Hong-Taek Ju received his BS degree in
computer science from Korea Advanced
Institute of Science and Technology (KAIST) in
1989, MS and PhD degree in computer science
and engineering from POSTECH in 1991, 2002
respectively. From 1991 to 1997, he worked at
Daewoo Telecom as a senior software engineer.

Currently, he is a fulltime lecturer in College of Communication and
Information, Keimyung University. His research interests include web-
based network management, network monitoring and data
synchronization over wireless mobile communication. He is a member
of IEEE and KNOM.

