Power Reflection and Transmission Coefficients for Meander-Line Polarizers with a Chiral Slab

  • Delihacioglu, Kemal (Electrical and Electronics Engineering Department, Gaziantep University) ;
  • Uckun, Savas (Electrical and Electronics Engineering Department, Gaziantep University)
  • Received : 2002.07.15
  • Published : 2003.02.28

Abstract

This paper presents a theoretical investigation of power reflection and transmission coefficients for a meander-line polarizer placed periodically on a chiral slab. It is assumed that a linearly polarized transverse magnetic wave is incident on a chiral slab from the air region. In the analysis, we derive the electric and magnetic fields in the modal form in the air and chiral regions. We obtain power reflection and transmission coefficients in a straightforward manner after matching the tangential components of the electric and magnetic fields at the boundaries. We present numerical results for the power reflection and transmission coefficients versus frequency and incident angle for different values of the chirality admittance. A meander-line polarizer placed on a dielectric slab can convert a linearly polarized wave to a circularly polarized wave. The design parameters for a meander-line polarizer are the dimensions of the meander-line and the values of the dielectric slab. Replacing a dielectric slab with a chiral slab introduces a new independent parameter which controls the wave polarization.

Keywords

References

  1. J. Opt. Soc. Am. A v.5 no.9 Electromagnetic Wave Propagation Through a Dielectric-Chiral Interface and Through a Chiral Slab Bassiri, S.;Papas, C.H.;Engheta, N.
  2. IEEE AP.S Newslett. v.30 no.5 Electromagnetic Chirality and Its Applications Engheta, N.;Jaggard, D.L.
  3. Electromagnetic Waves in Chiral and Biisotropic Media Lindell, I.V.;Sihvola, A.H.;Tretyakov, S.A.;Vitanen, A.J.
  4. IEEE Trans. Propagat. v.21 no.376 Meander-Line Polarizer Young, L.;Robinson, L.A.;Hacking, C.A.
  5. IEEE Trans. AP v.35 no.6 Analytical Model of a Multilayered Meander-Line Polarizer Plate with Normal and Oblique Plane Wave Incidence Chu, R.S.;Lee, K.M.
  6. IEEE Trans. on Antennas and Propagat. v.37 no.11 Periodic Chiral Structures Jaggard, D.L.;Engheta, N.;Kowarz, M.W.;Pelet, P.;Liu, J.C.;Kim, Y.
  7. Pure and Applied Optics: Journal of the European Optical Society Part A v.5 no.4 Optical Properties of Isotropic Chiral Media Lekner, J.
  8. IEEE Trans. Microwave Theory & Tech. v.46 Study of the Dispersion Characteristics of Planar Chiral Lines Plaza, G.;Mesa, F.;Homo, M.
  9. IEE Proc.-Microw. Antennas Propag. v.146 no.4 Reflection of Obliquely Incident Plane Wave from Chiral Slab Backed by Soft and Hard Surface Viitanen, A.J.;Puska, P.P.
  10. Journal of Electromagnetic Waves and Applications v.15 no.10 Broad Band U-Slot Patch Antenna Loaded by Chiral Material Scamarcio, G.;Bilotti, F.;Toscano, A.;Vegni, L.
  11. IEE Proc.- Microw. Antennas Propag. v.148 no.4 Analytical Investigation of Electromagnetic Waves in Bianisotropic Media Vytovtov, K.A.
  12. Electronic Lett. v.27 no.22 Computation of Susceptance for Thick Meander-Line Polarizer Uckun, S.;Ege, T.
  13. Theory and Analysis of Phased Array Antennas Amitay, N.;Galindo, V.;Wu, C.P.
  14. IEEE Trans. AP v.18 no.5 Scattering by a Two-Dimensional Periodic Array of Conducting Plates Chen, C.C.
  15. IEEE Trans. AP v.23 no.1 Scattering by an Infinite Periodic Array of Thin Conductors on a Dielectric Sheet Montgomery, J.P.
  16. Field Computation by Moment Methods Harrington, R.F.
  17. IEEE Trans. on Antennas and Propagat. v.AP-32 no.9 Susceptance Computation of a Meander-Line Polarizer Layer Terret, C.;Levrel, J.R.;Mahdioubi, K.
  18. Power Reflection and Transmission Coefficient for a Chiral Slab and Meander-Line Polarizer with a Chiral Slab Delihacioglu, K.