
ETRI Journal, Volume 25, Number 2, April 2003 Woo-Jin Lee et al. 121

To enhance the productivity of software development and
accelerate time to market, software developers have
recently paid more attention to a component-based
development (CBD) approach due to the benefits of
component reuse. Among CBD processes, the identification
of reusable components is a key but difficult process.
Currently, component identification depends mainly on the
intuition and experience of domain experts. In addition,
there are few systematic methods or tools for component
identification that enable domain experts to identify
reusable components. This paper presents a systematic
method and its tool called a component identifier that
identifies software components by using object-oriented
domain information, namely, use case models, domain
object models, and sequence diagrams. To illustrate our
method, we use the component identifier to identify
candidates of reusable components from the object-oriented
domain models of a banking system. The component
identifier enables domain experts to easily identify reusable
components by assisting and automating identification
processes in an earlier development phase.

Manuscript received June 7, 2002; revised Dec. 6, 2002.
This work was supported by the National Research Laboratory (NRL) Program of the

Ministry of Science and Technology of Korea.
Woo-Jin Lee (phone: +82 53 950 6378, e-mail: woojin@knu.ac.kr) is with the Department

of Computer Science, Kyungpook National University, Daegu, Korea.
Oh-Cheon Kwon (phone: +82 42 860 1144, e-mail: ockwon@etri.re.kr), Min-Jung Kim (e-

mail: minjkim@etri.re.kr), and Gyu-Sang Shin (e-mail: gsshin@etri.re.kr) are with Computer
& Software Research Laboratory, ETRI, Daejeon, Korea.

I. INTRODUCTION

In the rapidly evolving and enlarging software market, there
is a great need for enhancing the productivity of software
development and accelerating time to market. As a solution for
this problem, the component-based development (CBD)
method has recently been introduced into software
development organizations, because the method supports
parallel or incremental development, plug-and-play features,
and easy component reuse and maintenance. In general, a
software component is specified as a collection of objects. The
software component can be independently developed,
delivered, and composed with other components without
modifying the source code and has explicit and well-specified
interfaces [1]. The reusability of components is one of the
factors that have made the CBD method successful. Among
the CBD processes [1], the process of identifying reusable
components is the most important and difficult process because
it is performed in terms of domain properties or business logics
and it does not include design or implementation issues in an
earlier development phase.

Since only a few systematic identification methods have
been designed, there are no automatic or semi-automatic tools
that enable domain experts to easily and efficiently identify
reusable components by guiding or assisting identification
processes in an earlier development phase. Component
identification is mainly performed by domain experts’ intuitive
procedures or experiences without systematic tools. The
rational unified process (RUP) [2] provides, in three different
perspectives, intuitive or human oriented identification
methods based on process design, object dependency, and
subsystems at the architecture level. Choi and et al. [3]
provided an enhanced version of the RUP approach, in which

A Method and Tool for Identifying Domain
Components Using Object Usage Information

 Woo-Jin Lee, Oh-Cheon Kwon, Min-Jung Kim, and Gyu-Sang Shin

122 Woo-Jin Lee et al. ETRI Journal, Volume 25, Number 2, April 2003

service components were defined as objects extracted from
closely related use cases and in the refinement step, business
components were defined as common objects that appear in
several service components. In major CBD tools, such as
TogetherSoft’s Together [4], Computer Associates’ Cool:Joe
[5], and Compuware’s Uniface [6], the component
identification process is not systematically supported. Together
and Uniface do not support the component identification
process, while Cool:Joe supports the identification process by
grouping closely related objects with core types, which are
specified by users.

In this paper, we propose a systematic method and its
supporting tool for identifying software components from
object-oriented domain models, namely, use case diagrams,
class diagrams, and sequence diagrams (Fig. 1). These object-
oriented domain models can be obtained from a domain
analysis process, in which common domain objects and
common use cases are extracted through commonality and
variability analysis. Assuming that common class diagrams,
common use cases, and sequence diagrams are given after the
domain analysis process, we focus on the component
identification process, in which we clearly define dependencies
among objects and propose object clustering algorithms.

Fig. 1. Overview of the component identification procedure.

O-O Domain Models

Common
Use Case Diagram

realized

AO Usage Graph

Object Dep. Network

Object Usages

additional
Object Usages

Object
Information

transformed

Identification
Algorithms

performed

Domain Systems

Commonality
& Variability
Analysis

Domain Analysis Component Identifier

User
Specification

Sequence
Diagram

Common
Class Diagram

We describe the object-oriented domain models from three
viewpoints—structural, functional, and behavioral—along with
their corresponding domain models —class diagrams, use case
diagrams, and sequence diagrams. To precisely describe the
dependencies among objects, we merge these three viewpoints
into a uniform model, in which we extract the structural
relationships among objects from class diagrams. To clarify
ambiguous dependencies among objects, we extracted object
usages, which represent usage relationships among objects such
as create, destroy, update, and reference, from sequence
diagrams automatically or additionally specified the object
usages according to use cases. We weighted each object usage
according to the frequency or significance of each use case.

For uniformly describing object usages and structural
dependences in a single notation, we propose an actor and
object usage graph (AO usage graph). To perform the
clustering algorithms, we provide a new graph concept, called
the object dependency network. An object dependency network
can be obtained from the AO usage graph by calculating a
weighted value for the accumulated object usages and by
eliminating actor nodes. We provide on the basis of the object
dependency network, two object clustering algorithms called a
seed algorithm and a cohesion algorithm. In addition, we
provide a support tool called the component identifier, which
was integrated into the Component-Based Application
deveLopment Tool (COBALT) [7] developed by ETRI. Using
the integrated tool, we carried out a case study for developing a
simplified Internet-based banking system in order to adjust the
weight values of dependency types and to check the
applicability of the clustering algorithms.

The rest of the paper is structured as follows: section 2
briefly describes the component development process. In
section 3, we describe the design of the component identifier.
Section 4 gives the definitions for the AO usage graph and
object dependency network for describing object dependencies
in formal notation. In section 5, the component identification
algorithms are explained step by step for a banking system
example. Section 6 specifies the component identifier tool.
Finally, in section 7, we conclude our work and provide an
outlook on future work.

II. COMPONENT DEVELOPMENT PROCESS

The CBD process is classified into two major processes: the
component development (CD) process, which builds reusable
components, and the component-based software development
(CBSD) process, which assembles pre-built components into an
application system. In this study we focused on the CD process.
Before we explain the CD process, we will describe the
definition and properties of a software component. There are
several definitions of a component. D’Souza et al. [1] defined a
component as “an independently deliverable unit of software
that encapsulates its design and implementation and offers
interfaces to the outside, by which it may be composed with
other components to form a larger whole.” In addition, the
Object Management Group defined a component in the Unified
Modeling Language Specification [8] as “a distributable piece
of implementation of a system, including software code (source,
binary or executable) but also including documents, etc.”

The following properties of components are generally
accepted.

• Encapsulated: a component hides its implementation or

ETRI Journal, Volume 25, Number 2, April 2003 Woo-Jin Lee et al. 123

code that drives a component. The consumer of a component
can access the component using its interfaces.

• Descriptive: a component must publish information about
itself including its interfaces, implementations, and deployment
conditions.

• Replaceable: implementation details of a component can
be changed without affecting the consumers of the component
and can be provided if there is no change in the component
interface.

• Extensible: it is possible to enlarge or extend its range of
services without affecting the consumers, delegating
responsibility, or adding interfaces.

Fig. 2. Component development process.

•
•
•
•

Component Class Diagram
Sequence Diagram
SRE Supporter
Design Pattern Manager

•
•

Application Package
Testing Client

Common Use Case Diagram
Common Class Diagram
Sequence Diagram

Identified Domain Components

•
•
•

•

Products

Domain Analysis

Component Design

Implementation

Component
Identification

Conceptual Component
Modeling

•
•
•
•

Component Diagram
Component Specification
Interface Specification
Component Sequence Diagram

Platform Dependent
Component Modeling

Deployment &
Testing

In order to develop highly adaptable and reusable
components, we propose our CD process model as depicted in
Fig. 2. Unified Modeling Language (UML) [9], which builds
several diagram models, such as class diagrams, use case
diagrams, sequence diagrams, collaboration diagrams, and so
on, is widely used in describing domain models in the software
industry. Our approach describes the output of domain
modeling in UML diagram notation. In addition, we divide the
component modeling into two phases: conceptual component
modeling and platform-dependent modeling. In the perspective
of domain characteristics, conceptual component modeling
identifies conceptual components as reusable units without
considering platform constraints and implementation details. In
this step, component interfaces are clearly defined and their
dependencies described. In platform-dependent modeling, each
conceptual component is internally designed by using
platform-specific properties, such as entity beans and session

beans. By using a two-layered component modeling approach,
reusability of components may be further improved. Since
conceptual components and their interfaces are specified in a
conceptual modeling process, they are more reusable and can
be reused for any system. If someone wants to port a
component to another component framework without affecting
the component’s functionalities, he or she rebuilds a new
platform-specific component based on the same conceptual
component.

• Domain Analysis: Domain analysis is an activity for
identifying objects and operations in a set of related systems
and for identifying common objects among the set of existing
systems through commonality analysis and variability
analysis. Domain analysis plays a key role in the success of
finding reusable domain components because it can
efficiently analyze a specific domain and sufficiently provide
its characteristics.

• Component Identification: Component identification is an
activity for identifying components from various domain
models. In an intuitive manner, users can manually identify
components from domain models. Otherwise, components are
systematically identified by using identification algorithms
based on object-relationship factors and object usages.

• Component Design: Component design is an activity for
modeling each component according to its specification.
Component design consists of the two modeling processes,
conceptual component modeling and platform-dependent
modeling. Assuming that component interfaces are not
changed, the detailed design of each component can be
performed independently according to its specification.

• Implementation: Implementation is an activity for adding
business logics including the details of how the operations of
an interface will work.

• Deployment & Testing: Deployment & testing is an
activity for packaging and deploying components to an
application server and for checking the interface functionality
of a deployed component.

Although the CBD process has many advantages, some
considerations should be taken into account when applying the
CBD process to real projects. First, at the earlier stage, the
CBD process requires much cost and effort because of learning
curves. Second, the most important factor for successfully
applying the CBD process is mainly dependent on the number
or quality of existing reusable components. In order to enhance
the reusability of components, we focus on identifying highly
cohesive domain components with low coupling. Other
processes, such as domain analysis, component design,
implementation, and deployment & testing, are performed with
the COBALT:Constructor tool [7].

124 Woo-Jin Lee et al. ETRI Journal, Volume 25, Number 2, April 2003

III. STRUCTURE OF THE COMPONENT
IDENTIFIER

The component identifier plays the role of partitioning a
large system into manageable components (or subsystems) by
analyzing its domain models. Input data, such as use case
diagrams, class diagrams, and sequence diagrams, are
obtained from the Domain Modeler as shown in Fig. 3. The
identified components are provided to the Component
Modeler for performing further steps of component
development, such as interface definition, component
dependency description, component design, and component
implementation.

As Fig. 3 illustrates, the component identifier is composed of
the Usage-Management Wizard, Algorithm-Performing
Wizard, Domain Model Translator, Object Dependency
Network Generator, and Object Clustering Engine.

The Usage-Management Wizard receives the structural
dependency among objects from the class diagram and the
object usages that may be extracted from sequence diagrams
or may be additionally provided by users. The Object
Dependency Network Generator calculates weight values
between objects by considering the structural dependency and
usage relationships of objects. It also generates an object
dependency network by representing object dependencies as
weighted arcs. The Algorithm-Performing Wizard receives
threshold values, such as a clustering threshold (CT) and a
seed object threshold (SOT), from users. Based on clustering
criteria such as CT and SOT, the Object Clustering Engine
performs clustering algorithms for grouping closely related
objects.

Fig. 3. Structure of the component identifier.

COBALT
Domain Modeler

COBALT
Component Modeler

Component Identifier

Domain Model
Translator

Object Dependency
Network Generator

Object Clustering
Engine

- use case model

- sequence model
- component

candidates

Usage
Management

Wizard

Algorithm
Performing

Wizard

- object model

IV. REPRESENTATION OF OBJECT
RELATIONSHIPS

In order to support a systematic identification procedure,
domain modeling information should be precisely described by
formal notations. In this section, the actor and object usage
graph (AO usage graph) and object dependency network are
provided as formal notations for describing domain models.

1. Actor and Object Usage Graph

Object-Oriented (O-O) domain modeling may be mainly
performed from the perspective of structural, functional, and
behavioral views. Object modeling finds and defines core
domain objects that perform major roles in structuring a system.
Use case diagrams and sequence diagrams are used to describe
functional requirements and the behavior of a system,
respectively. To specify the correlation of the different domain
models in a uniform style, it is necessary to merge the domain
models into a single formal model.

As an example, we provide an Internet-based banking
system with functionalities such as deposit management,
customer management, customer authentication, journaling,
and bookkeeping. Figure 4 shows a class diagram including
common domain objects involved in the banking system. For
simplicity, the dependency relationships, class attributes, and
methods are omitted in Fig. 4.

In Fig. 4, a customer, such as a private or corporation
customer, may have zero or multiple accounts. Customers
can change customer information via transactions of a
customer (CustomerTX) and can perform ordinary transactions
(OrdinaryTX), such as opening an account, depositing,
withdrawing, and transferring money. A single transaction is
related to a set of accounts. When performing a transaction, a
set of journaling and bookkeeping information can be recorded
via Journaling and BookKeeping classes, respectively.

A sequence diagram can be viewed as one realization of a
use case. Figure 5 shows two sequence diagrams that realize
the “register a private customer” and “create a new account”
use cases, respectively. In Fig. 5(a), a private customer registers
his/her personal record through the interfacing class
CustomerTX, which is inherited from the Transaction (TX)
class. The personal record is stored in the PrivateCustomer
class. Journaling information is recorded in the
CustomerJournal class before and after important transactions.

Among the structural relationships between objects, such as
generalization, composition, association, and dependency, the
first two relationships of a class diagram show concrete
dependencies between objects, while the other relationships are
relatively ambiguous. In our approach, the association and
dependency relationships are further clarified by adding

ETRI Journal, Volume 25, Number 2, April 2003 Woo-Jin Lee et al. 125

Fig. 4. A class diagram for common domain objects in a banking system.

Customer
PrivateCustomer

Customer
CorporateCustomer

Customer

0..*

Transaction
CustomerTX BookKeeping

Transaction

1..*
has

1

Transaction
OrdinaryTX

Journaling

Account

has
1

Account
OrdinaryAccount

relates
11*

Journaling
DepositJournal

Journaling
CustomerJournal

records

1..*

1

1

create & update

Fig. 5. Examples of sequence diagrams.

C_Journal
CustomerJournal

Customer_Tx
CustomerTX

Private
PrivateCustomer

writelnitJournal

createPrivate

writePostJournal

P_Customer

(a) a sequence diagram for registering a private customer

D_Jounral
DepositJournal

Ordinary_TX
OrdinaryTX

Ordinary
OrdinaryAccount

writelnitJournal

createNewAccount

writePostJournal

P_Customer

createAccount

Private
PrivateCustomer

InquireCustomer

(b) a sequence diagram for creating a new account

registerCustomer

behavioral information that can be found in use cases and
sequence diagrams. Thus, object usages of use cases or
sequence diagrams are complemented for the association and

dependency relationships. For more accurately representing
domain models, the weighted value of each object usage is also
specified by considering the usage frequency or the importance
degree of its role. For describing the structural and behavioral
relationships among objects in a uniform notation, we propose
the AO usage graph. It represents the dependency of objects,
such as generalization, composition, accumulated object usages,
and inherited weights of object usages, from the importance
degrees of use cases. The AO usage graph is defined as follows.

Definition 1. Actor and Object (AO) Usage Graph
A directed graph G = (V, E), where
• V = A ∪ O: A represents a set of actors and O represents a

set of objects,
• E: a set of edges which have labels, such as generalization

and composition, and a bag of weighted labels, such as
create-destroy, create, destroy, update, and reference.

Although the usage patterns between actors and objects
have no direct effect on the dependencies among objects, they
are described in the AO usage graph because an actor plays
the important role of initiating a flow of messages in a
sequence diagram. The usage pattern from actors to objects
can be used for determining important objects. However,
dependencies from objects to actors that represent users, other
systems, or hardware are not specified since they have no

126 Woo-Jin Lee et al. ETRI Journal, Volume 25, Number 2, April 2003

effect in the internal system behavior. In the AO usage graph,
actors are denoted as dotted circles while objects are denoted
as lined circles. The dependency relationships among objects
or between actors and objects are described by seven
dependency keywords as follows: generalization, composition,
create-destroy, create, destroy, update, and reference. Each
object usage has a weighted value inherited from the weight of
the corresponding use case. The dependency relationship
between nodes is represented by a sum of weighted object
usages or a structural relationship such as generalization and
composition.

Figure 6 is an example of the AO usage graph obtained from
the class diagram shown in Fig. 4, and from two sequence
diagrams shown in Fig. 5. The nodes and “Gen” represent the
classes and generalization relationship in the class diagram,
respectively (Fig. 4). Object usages, such as 1.0*Update and
0.8*Update+0.8*Update, are extracted from sequence
diagrams (Fig. 5) on the assumption that the weights of the use
case “create a new account” and the use case “register a private
customer” are 1.0 and 0.8, respectively.

 Fig. 6. An example of the AO usage graph.

Deposit
Journal

1.0*Update

1.0*Create

0.8*Update 0.8*Create

1.0*Reference

PCustomer

OrdinaryTX

CustomerTX

Private
Customer

Customer
Journal

0.8*Update
+0.8*Update

Transaction

Corporate
Customer

Customer

BookKeeping

Journaling

Gen

Ordinary
Account Account

Gen

1.0*Update
+1.0*Update

Gen

Gen
Gen

Gen

Gen

2. Object Dependency Network

Although the AO usage graph is enough to describe the
structural and behavioral features of the domain models in a
uniform notation, it is not suitable for performing the clustering
algorithm since it is difficult to compare accumulated usages
attached on dependency edges. Therefore, we provide a
notation, the object dependency network, in which the
accumulated usages are translated into a weighted value. In
addition, the importance degree of each object is calculated by
adding weighted usages for each incoming arc except structural
dependencies. The object dependency network is defined as
follows.

Definition 2. Object Dependency Network
A directed graph G = (V, E, w), where
• V = O: O is a set of objects,
• E: a set of directed edges which have a dependency degree

 (a real number),
• w(v): a weight function of defining the importance degree

of each vertex v.

The object dependency network represents the dependency
degrees (DDs) among objects and the importance degree (ID)
of each object. In the object dependency network, actor nodes
and their connected arcs are transformed into self-loops with
weighted values. Figure 7 shows an example of the object
dependency network transformed from the AO usage graph
shown in Fig. 6.

As described in Fig. 7, the dependency degrees among
objects have normalized real values ranging from 0.0 to 1.0,
which are obtained by summarizing the weight values of
accumulated usages and being normalized according to the
largest values. The value of each object usage is calculated by
referencing a weight-mapping table, as shown in Table 1, which
assigns a weight value to each dependency type according to the
coupling strength between objects. One notable point in Table 1
is that the generalization relationship does not appear. The
generalization relationship is the strongest coupling among
objects since an inherited class must include its parent classes.
Therefore, we specially treat the generalization relationship at
the end of the identification process.

 Fig. 7. An example of the object dependency network.

Deposit
Journal 0.6

0.56

0.2

OrdinaryTX

CustomerTX

Private
Customer

Customer
Journal

0.48

Transaction

Corporate
Customer

Customer

BookKeeping

Journaling

0.3

0.24

0.3

0.6

0.48

0.76
0.0

0.0

0.0

0.0

0.0

0.24

0.7 0.0
Account

0.7

Ordinary
Account

Strong coupling relationships, such as composition and

create/destroy, have high values, while weak coupling

ETRI Journal, Volume 25, Number 2, April 2003 Woo-Jin Lee et al. 127

relationships, such as update and reference, have relatively low
values. In order to provide more flexibility or to reflect domain
experts’ experience in assigning the weight of each type, the
type weights shown in Table 1 can be customized by domain
experts.

Table 1. Weighted values of dependency types.

Dependency Type (DT) Weight
Composition 1.0
Create/Destroy 0.8
Create 0.7
Destroy 0.6
Update 0.3
Reference 0.2

The DD is characterized by a weight of structural
dependency or accumulated object usages. The weight of
accumulated object usages is calculated by (1), that is, the DD
value between two objects is obtained by summing up the
weights of all the instances of object usages for each use case,
where the weight of each object usage is calculated by
multiplying the weights of the dependency type and the
corresponding use case.

∑ ∑
= =

UseCaseof

i

InstDTof

j
ji InstDTWeightUseCaseW

#

1

#

1

)(*)(. (1)

The ID value of an object is defined by adding the DD
values of its incoming arcs, which may come from actors or
other objects in the AO dependency graph. The ID values are
used to determine important objects and to calculate relative
dependencies between objects when performing identification
algorithms. In the object dependency network, an ID value
appears in the corresponding node as shown in Fig. 7.

V. COMPONENT IDENTIFICATION
ALGORITHMS AND THEIR APPLICATION

To group closely related objects into a cohesive component,
we propose the seed algorithm and cohesion algorithm. The
seed algorithm performs object clustering in the pivot of
important objects while the cohesion algorithm groups the
closest objects incrementally and repetitively.

1. Important Objects and Clustering Criteria

In order to identify a group of objects that perform an
independent and important behavior of a system, it is necessary

to find an object that has a key role in the group. Then, using
the key object, its closely related objects are grouped together.
In our approach, an initiation object that has the role of
interacting with users is considered an important object due to
the initiating users’ requirements. The initiation object is
connected to actors. A reuse object that is commonly used by
several objects is also considered an important object in the
perspective of reusability. In the object dependency network,
important objects can be found on the basis of user-defined
SOT values as follows.

- An important initiation object is an object which has a self-
loop with a greater ID value than the SOT.

- An important reuse object is an object which has two or
more incoming arcs with greater DD values than the SOT.

Assuming that the SOT value is 0.4, objects O1 and O5,
shown in Fig. 8, are initiation objects, and object O3 is a reuse
object. These important objects are used as seed objects for
clustering closely related neighbor objects.

 Fig. 8. Decision of important objects and object clustering.

0.3

0.5

0.2

0.4

0.8

0.8 0.3

0.20.9

0.7

0.8 0.6

0.1

0.7

O2

0.1

O1

O3 O4

O5

O6

A simple criterion for clustering a neighbor object is to check

whether the DD value of a connected arc is greater than the CT.
There might be an object that is only used by a single object; it
is called a dedicated object. Since the dedicated object is only
available to a calling object, it is reasonable to merge it with the
calling object. However, this clustering criterion mainly fails to
group the dedicated object due to its lower DD value. In order
to consider dedicated objects, the clustering criterion may be
slightly modified. Instead of using the DD value of an arc as
clustering criteria, a relative dependency value (that is, the DD
of an arc/ID of the destination arc object) is used. Since the

128 Woo-Jin Lee et al. ETRI Journal, Volume 25, Number 2, April 2003

relative dependency (RD) of the dedicated object is 1.0, it may
be included in its calling object. In Fig. 8, by applying the
relative dependency values to the clustering criterion, dedicated
objects O2 and O4 can be included in their calling objects
although they have lower DD values than the CT.

Dependencies among objects may be bi-directional as shown
in Fig. 8. Therefore, both directional dependencies should be
considered when clustering objects. Since the relative
dependency means the relative importance degree among
incoming arcs, it is not reasonable to add both directional
dependency weights. Instead, we chose the maximum of two
dependencies as the relative dependency of objects.

2. The Seed Algorithm

Using the definition of important objects and clustering criteria
mentioned previously, the seed algorithm identifies cohesive
components according to the procedure shown in Fig. 9.

After object information and object usages are extracted
from the O-O domain models, the AO usage graph and object
dependency network are generated. Then, by assigning the
important objects to seed objects, objects that have a larger

Get objects &

object usages

Generate object
dependency network

Determine
seed objects

Start

Comp[i] = Seed[i]
Done[i] = False

∃i :
Done[i] = False

No

end

∃Obj :
RD(Comp[i],Obj) > CT

Yes
Comp[i] =

Comp[i]+Obj

No
Done[i] = True

Yes

Fig. 9. A flowchart of the seed algorithm.

Fig. 10. O-O domain models of the banking system.

ETRI Journal, Volume 25, Number 2, April 2003 Woo-Jin Lee et al. 129

dependency value than the CT are iteratively clustered into
cohesive components.

By applying the seed algorithm to the banking system step
by step, we provide a more clear and illustrative explanation.
As a result of a domain analysis process, the banking system is
composed of 13 use cases, such as Open Account and Deposit,
18 sequence diagrams, such as Bank-OpenAccount and Bank-
CloseAccount, and 12 objects, such as Customer, Account, and
Transaction, as shown in the leftmost browser tree of Fig. 10.
Each step of the seed algorithm is explained as follows.

• Step 1: To construct an AO usage graph, object
information and object usages are automatically extracted from
class diagrams and sequence diagrams, respectively. In
addition, users can specify the importance degree of each use
case or sequence diagram and can update object usages by
using the Usage-Management Wizard as shown in Fig. 11.
Figure 11 illustrates five object usages in the Bank-
OpenAccount sequence diagram and its importance degree is
set to 1.0.

• Step 2: Internally, an AO usage graph is transformed into
an object dependency network by calculating each DD and ID
value and by replacing actor nodes with self-loop arcs. Figure
12 shows an object dependency network of the banking system.

• Step 3: Using the Algorithm-Performing Wizard (Fig. 13),
domain experts specify an SOT for determining seed objects.
On the object dependency network shown in Fig. 12,
OrdinaryTX and CustomerTX are defined as seed objects,
assuming that the SOT is 0.5.

In a preparatory step for clustering objects, each seed object
is assigned to a component. A condition flag, Done[i], is given
to each component to determine whether further object
navigation is possible. The condition flag is initialized as a
‘false’ value.

• Step 4: A terminating condition of the identification
procedure is determined according to whether or not there is a
component in which additional object navigation is possible.
As a result of checking the terminating condition, if none of the
components are allowed to perform the navigation, then the
identification procedure is terminated. Otherwise, after finding
a non-included object whose relative dependency is larger than
a specified CT (see “Threshold for Object Clustering” sliding
bar in Fig. 13), it is included into the corresponding component.
This process is repeated until none of the components have
further object navigation. In Fig. 12, OrdinaryAccount,
DepositJournal, and BookKeeping are grouped into the seed
object OrdinaryTX since their relative dependencies are 1.0. In
a similar manner, PrivateCustomer, CorporationCustomer, and
CustomerJournal are grouped into the seed object CustomerTX.

Fig. 11. The usage-management wizard.

 Fig. 12. An object dependency network of the banking system.

Deposit
Journal

0.84

0.71

0.13

CustomerTX

Private
Customer

Customer
Journal 0.55

Transaction

Corporate
Customer

Customer

BookKeeping

Journaling

0.52

OrdinaryTX

0.65
0.65

0.84

0.55

0.84

0.0

0.0

0.67

0.80

0.0

0.52

1.0 0.0
Account

1.0

Ordinary
Account

0.67

0.67

0.13

Fig. 13. The algorithm-performing wizard.

As a final step, generalization is considered. For each
inherited class, its parent classes are included into the same
component. Figure 14 shows the final result of the component

130 Woo-Jin Lee et al. ETRI Journal, Volume 25, Number 2, April 2003

identification process. In the banking example, two
components, OrdinaryTX and CustomerTX, are identified.
Each class diagram of the components is shown in Fig. 14,
where the generalization relationships among classes are
included.

 Fig. 14. An example of a component diagram.

3. The Cohesion Algorithm

The second clustering algorithm, the cohesion algorithm,
which incrementally groups closely coupled objects by the
criteria of the CT is shown in Fig. 15.

Fig. 15. A flowchart of the cohesion algorithm.

Get objects &
object usages

Generate object
dependency network

Find and merge a pair (O1, O2)
with the largest weight

Yes

Start

end
No

Recalculate dependency weight
with merged objects

∃(O1,O2) :
DW(O1,O2) ≥ CT

The first two steps of the cohesion algorithm are the same as

those of the seed algorithm. Figure 16 (a) shows a simplified
object dependency network where IDs, self-loops, and

unrelated objects are omitted since only the cohesions of
objects are considered in the cohesion algorithm. The
remaining steps are described as follows.

• Step 3: If there exists a pair of objects whose dependency
weight (DW) exceeds the CT, the next clustering step is
performed. Otherwise, the procedure is terminated.

• Step 4: Among the object pairs whose dependency
exceeds the CT, the pair with the largest weighted value is
selected and merged into a cluster. In Fig. 16(a), assuming that
the CT is 0.5, a pair of OrdinaryAccount and OrdinaryTX is
first chosen to be merged into Cluster1.

• Step 5: In the result of object clustering, the weight
between the cluster and remaining objects should be
recalculated. If an object has multiple edges with the cluster, its
dependency weight is redefined by summarizing individual
weights of multiple edges. After weight recalculation, the
procedure proceeds to Step 3.

Figure 16 shows the iterative clustering steps of the cohesion
algorithm. In Figs. 16(a), (b) and (c), three successive clusters
are shown. Figure 16(c) represents the final step, where there
are no more pairs of objects whose dependency exceeds CT.
Thus, we found two components: one is composed of
OrdinaryAccount, DepositJournal, OrdinaryTX, and
BookKeeping classes; the other is composed of
PrivateCustomer, CustomerTX, CorporateCustomer, and
CustomerJournal. For each inherited class, its parent classes are
included into the same component, as in the seed algorithm.

DepositJournal

0.13

Customer
Journal

0.55

Corporate
Customer

BookKeeping

OrdinaryTX

OrdinaryAccount

0.67

0.67

0.13

0.13

CustomerTX
PrivateCustomer

Customer
Journal

Corporate
Customer

BookKeeping

0.67

0.13

(a) Clustering Stage1

Cluster1

Cluster2

Cluster3 0.26

OrdinaryAccount
DepositJournal
OrdinaryTX
BookKeeping

PrivateCustomer
CustomerJournal
CorporateCustomer
CustomerTX

Cluster5

Cluster6
(b) Clustering Stage2

(c) Clustering Stage3

Cluster2

Cluster3

Cluster4 Cluster6

Fig. 16. Clustering steps in the cohesion algorithm.

0.84
1.0

CustomerTX

Private
Customer

0.71

0.67

Cluster4
OrdinaryAccount
DepositJournal
OrdinaryTX

0.55

In order to provide guidance for adjusting CT and SOT
values, we offer some criteria for a good component. From the
perspective of the users, there are several criteria for measuring
the quality of components: reusability, changeability, cohesion,

ETRI Journal, Volume 25, Number 2, April 2003 Woo-Jin Lee et al. 131

independency, coupling, and so on. Among these criteria,
general design criteria, such as cohesion and coupling, are
measured in our approach. Cohesion of a component is defined
as the average dependency of the internal classes. Since super-
classes and dedicated classes are included regardless of a
component’s main behavior, they are excluded in measuring
cohesion. Coupling of a component is defined as the sum of
dependencies among internal classes and external classes. By
the cohesion and coupling information of an identified
component, users can evaluate its quality.

VI. TOOL SUPPORT

For effectively performing the component identification
process, it is necessary to provide an automated tool that
systematically identifies domain components and connects
existing CBD tools, such as a domain modeling tool or a
component design & implementation tool, in order to support
the full lifecycle of component development.

The component identifier was implemented by using
JDK1.3. The component identifier is mainly composed of the
Usage-Management Wizard and Algorithm-Performing
Wizard, which are shown in Figs. 11 and 13. Through the
Usage-Management Wizard, users specify weights of use cases
and add or update object usages. After that, with the Algorithm-
Performing Wizard, users perform an iterative identification
process by adjusting SOT and CT values.

To support a full CBD process, the component identifier is
integrated with the COBALT tool. Through O-O domain
modeling with the COBALT tool, the component identifier
generates domain components, which are inputted to the
COBALT tool to proceed to further development phases. The
COBALT tool is a CASE tool for supporting both the CD
process and CBSD process. The tool is composed of the
COBALT:Constructor [11], which provides a tool set for
performing O-O domain modeling and developing and
deploying EJB components, and the COBALT:Assembler [12],
which provides a tool set for rapidly building a component-
based software application by a visual plug&play assembly of
EJB components.

VII. CONCLUSIONS AND FUTURE WORK

We have described a systematic component identification
method and its procedure, which is one of the critical and
difficult CBD processes, and provided the design and
implementation of its support tool. With the help of the
component identification tool, users can systematically identify
reusable domain components. Since our component
identification process is based on the O-O domain model that is

widely used, users can easily apply the component identifier to
existing O-O domain models without any additional effort. In
addition, during domain modeling, users can concentrate on
making O-O domain models without carrying out any
preparations for the component identification process.

Due to integration of the component identifier and
COBALT:Constructor, the tool efficiently supports the whole
development cycle from the domain modeling process to the
testing and deployment processes in an iterative and
incremental manner. We believe that our tool has competitive
power and it will be widely used for promoting the component
industry in the future.

Until now, we have applied the identification algorithms to
three practical examples for tuning or enhancing the algorithms.
We found that tool users want to see object dependencies in a
visual form. Additionally, due to the iterative component
identification such as assigning weight values and applying
algorithms, tool users want to intuitively know the changes of
object dependencies when they assign new weight values. In a
future work, we will develop a visualization mechanism and
carry out a study on finding additional or supplementary
domain information in order to more accurately reflect
dependencies among objects.

REFERENCES

[1] D.F. D’Souza and A.C. Wills, Objects, Components, and
Frameworks with UML – the Catalysis Approach, Addison-
Wesley, 1999.

[2] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software
Development Process, Addison-Wesley, 1999.

[3] M.S. Choi, Y.I. Yoon, and J.N. Park, “Study about a Component
Identification Method Based on RUP,” Journal of Korea
Information Processing Society, Feb. 2002.

[4] TogetherSoft, Features of Together, http://www.togethersoft.com
/products/controlcenter/ features.jsp, 2001.

[5] Computer Associates, COOL:Joe 2.0 Product Descriptions,
http://www.cai.com/products/cool/joe /cooljoe_pd.pdf, 2001.

[6] Compuware, About Uniface, http://www.compuware.com/
products/uniface/about.htm, 2001.

[7] M.J. Kim, W.J. Lee, and G.S. Shin, “Development of COBALT
(COmponent-Based AppLication deveLopment Tool) for
Modeling and Constructing EJB Based Components,” IASTED-
AI2002, Feb. 2002.

[8] Object Management Group, CORBA Components,
http://www.omg.org, Mar. 1999.

[9] Object Management Group, Introduction to OMG’s Unified
Modeling Language (UMLTM), http://www.omg.org/gettingstarted /
what_is_uml.htm, 2002.

[10] Sun, Designing Enterprise Applications with the JavaTM 2
Platform, Enterprise Edition, Version 1.1, Mar. 2001.

[11] Y.J. Jeong, I.C. Yoon, M.J. Kim, W.J. Lee, S.J. Yoon, Y.J. Choi,

132 Woo-Jin Lee et al. ETRI Journal, Volume 25, Number 2, April 2003

and G.S. Shin, “An Implementation of the Tool Supporting
Design Pattern and Maintaining Alteration of Design Model for
EJB Component Design,” Proc. of the 2002 Int’l Conf. on
Software Engineering Research and Practice (SERP’02),
Lasvegas, USA, June 2002.

[12] Yoo-Hee Choi, Oh-Cheon Kwon, and Gyu-Sang Shin, “An
Approach to Composition of EJB Components Using C2 Style,”
Proc. of the EUROMICRO, Sept. 2002.

[13] R. Monson-Haefel, Enterprise JavaBeans, Second edition,
O’Reilly, 2000.

[14] P. Herzum and O. Sims, Business Component Factoring: A
Comprehensive Overview of Component-Based Development for
Enterprise, John Wiley & Sons, 2000.

[15] G. Caldiera and V.R. Basili, “Identifying and Qualifying Reusable
Software Components,” IEEE Computer, vol. 24, no. 2, Feb.
1991, pp. 61-70.

[16] Sanghyun Joo, Yongho Suh, Jaeho Shin, and Hisakazu kikuchi,
“A New Robust Watermark Embedding into Wavelet DC
Components,” ETRI J., vol. 24, no. 5, Oct. 2002, pp. 401-404.

[17] G. Caldiera and V.R. Basili, “Identifying and Qualifying Reusable
Software Components,” Computer, vol. 24, issue 2, Feb. 1991, pp.
61-70.

[18] Oh-Cheon Kwon, Seung-Yun Lee, and Gyu-Sang Shin, “A
Product Line Approach through Architecture Reuse of a
Component Assembly Process,” ICSE2002 Workshop, USA,
May 2002.

Woo-Jin Lee received his BS degree in
Computer Science from KyungPook National
University, Korea, in 1992, and the MS and
PhD degrees in computer science from the
Korea Advanced Institute of Science and
Technology (KAIST), Korea, in 1994 and 1999.
He was a Senior Member of Engineering Staff
in Electronics and Telecommunication Research

Institute (ETRI) from 1999 to 2002. Since March 2002, he has been a
faculty member of the Computer Science Department in Kyungpook
National University, Daegu, Korea. His research interests include
Requirements Engineering, CBD, and Modeling and Verification.

Oh-Cheon Kwon received the MS degree in
software engineering from the University of
Teesside, England, in 1994, and the PhD degree
in computer science from the University of
Durham, England, in 1998. He worked for
SERI (Systems Engineering Research
Institute)/KIST (Korea Institute of Science and
Technology) from 1985 to 1997. He has been a

Principal Researcher for ETRI since 1998. He was also a Visiting
Researcher at IBM/RTP, North Carolina, USA, in 1991. He is currently
involved in developing S/W architecture-based component technology
and MDA-based S/W production technology. He has served as an
Editor of Transactions of the Korea Information Processing Society,
and an Assessor for qualifying the new S/W technology (KT Mark)
sponsored by the Ministry of Science and Technology of Korea

(MOST). His research interests include Component-Based
Development (CBD), Model Driven Architecture (MDA), Web
Services and S/W Reuse.

Min-Jung Kim received the MS degree in
computer science from Sogang University, Seoul,
Korea, in 2000. Since 2000, she has been a
Member of Engineering Staff at Electronics and
Telecommunications Research Institute, Daejeon,
Korea. Her research interests include CBD
(Component-Based Development), Web Services,
and MDA (Model Driven Architecture).

Gyu-Sang Shin received the BS degree in
statistics from Sung Kyun Kwan University,
Korea, in 1981, and the MS degree in statistics
from Seoul National University, Korea, in 1983,
and the PhD degree in computer science from
Chungnam National University, Korea, in 2001.
He worked for Systems Engineering Research
Institute (SERI), Korea as a Researcher between

1983 and 1995. Since 1996, he has been a Research Staff in ETRI,
Korea. He is currently in charge of the Component Engineering
Research Team. He has been engaged in the development of
component-based development tools, real-time operating systems,
video streaming servers, and object-oriented CASE tools. His research
interests include Component-Based Software Engineering, Model
Driven Software Development, CASE Tool and Multimedia
Applications.

