DOI QR코드

DOI QR Code

Signal Transduction Pathways: Targets for Green and Black Tea Polyphenols

  • Bode, Ann M. (The Hormel Institute, University of Minnesota) ;
  • Dong, Zigang (The Hormel Institute, University of Minnesota)
  • Published : 2003.01.31

Abstract

Tea is one of the most popular beverages consumed in the world and has been demonstrated to have anti-cancer activity in animal models. Research findings suggest that the polyphenolic compounds, (-)-epigallocatechin-3-gallate, found primarily in green tea, and theaflavin-3,3'-digallate, a major component of black tea, are the two most effective anti-cancer factors found in tea. Several mechanisms to explain the chemopreventive effects of tea have been presented but others and we suggest that tea components target specific cell-signaling pathways responsible for regulating cellular proliferation or apoptosis. These pathways include signal transduction pathways leading to activator protein-1 (AP-1) and/or nuclear factor kappa B(NF-${\kappa}B$ ). AP-1 and NF-${\kappa}B$ are transcription factors that are known to be extremely important in tumor promoter-induced cell transformation and tumor promotion, and both are influenced differentially by the MAP kinase pathways. The purpose of this brief review is to present recent research data from other and our laboratory focusing on the tea-induced cellular signal transduction events associated with the MAP kinase, AP-1, and NF-${\kappa}B$ pathways.

References

  1. Agarwal, R. (2000) Cell signaling and regulators of cell cycle as molecular targets for prostate cancer prevention by dietary agents. Biochem Pharmacol. 60, 1051-1059.
  2. Ahmad, N., Cheng, P. and Mukhtar, H. (2000a) Cell cycle dysregulation by green tea polyphenol epigallocatechin-3-gallate. Biochem. Biophys. Res. Commun. 275, 328-334. https://doi.org/10.1006/bbrc.2000.3297
  3. Ahmad, N., Feyes, D. K., Nieminen, A. L., Agarwal, R. and Mukhtar, H. (1997) Green tea constituent epigallocatechin-3- gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J. Natl. Cancer Inst. 89, 1881-1886. https://doi.org/10.1093/jnci/89.24.1881
  4. Ahmad, N., Gupta, S. and Mukhtar, H. (2000b) Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor kappa$\beta$ in cancer cells versus normal cells. Arch. Biochem. Biophys. 376, 338-346. https://doi.org/10.1006/abbi.2000.1742
  5. Ahmad, N. and Mukhtar, H. (1999) Green tea polyphenols and cancer: Biologic mechanisms and practical implications. Nutr. Rev. 57, 78-83.
  6. Ahmad, N. and Mukhtar, H. (2001) Cutaneous photochemoprotection by green tea: A brief review. Skin Pharmacol. Appl. Skin Physiol. 14, 69-76. https://doi.org/10.1159/000056336
  7. Ahn, H. Y., Hadizadeh, K. R., Seul, C., Yun, Y. P., Vetter, H. and Sachinidis, A. (1999) Epigallocathechin-3 gallate selectively inhibits the PDGF-b-induced intracellular signaling transduction pathway in vascular smooth muscle cells and inhibits transformation of sis-transfected nih 3t3 fibroblasts and human glioblastoma cells (al72). Mol. Biol. Cell 10, 1093-1104.
  8. Amantana, A., Santana-Rios, G., Butler, J. A., Xu, M., Whanger, P. D. and Dashwood, R. H. (2002) Antimutagenic activity of selenium-enriched green tea toward the heterocyclic amine 2- amino-3-methylimidazo[4,5-f]quinoline. BioI. Trace Elem Res. 86, 177-191. https://doi.org/10.1385/BTER:86:2:177
  9. Angel, P. and Karin, M. (1991) The role of jun, fos and the ap-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta 1072, 129-157.
  10. Baeuerle, P. A. and Baltimore, D. (1996) NF-kappa B: Ten years after. Cell 87, 13-20. https://doi.org/10.1016/S0092-8674(00)81318-5
  11. Baeuerle, P. A. and Henkel, T. (1994) Function and activation of NF-kappa B in the immune system. Annu. Rev. Immunol. 12, 141-179. https://doi.org/10.1146/annurev.iy.12.040194.001041
  12. Balasubramanian, S., Efimova, T. and Eckert, R. L. (2002) Green tea polyphenol stimulates a ras, MEKKl, MEK3, and p38 cascade to increase activator protein 1 factor-dependent involucrin gene expression in normal human keratinocytes. J. Biol. Chem. 277, 1828-1836. https://doi.org/10.1074/jbc.M110376200
  13. Baldwin, A. S., Jr. (1996) The NF-kappa B and I kappa B proteins: New discoveries and insights. Annu. Rev. Immunol. 14, 649-683. https://doi.org/10.1146/annurev.immunol.14.1.649
  14. BartheIman, M., Bair, W. B., 3rd, Stickland, K. K., Chen, W., Timmermann, B. N., Valcic, S., Dong, Z. and Bowden, G. T. (1998) (-)-epigallocatechin-3-gallate inhibition of ultraviolet B- induced AP-1 activity. Carcinogenesis 19, 2201-2204. https://doi.org/10.1093/carcin/19.12.2201
  15. Benzie, I. E, Szeto, Y. T., Strain, J. J. and Tomlinson, B. (1999) Consumption of green tea causes rapid increase in plasma antioxidant power in humans. Nutr. Cancer 34, 83-87. https://doi.org/10.1207/S15327914NC340112
  16. Bernstein, L. R. and Colburn, N. H. (1989) Apl/jun function is differentially induced in promotion-sensitive and resistant JB6 cells. Science 244, 566-569. https://doi.org/10.1126/science.2541502
  17. Bertolini, F., Fusetti, L., Rabascio, C., Cinieri, S., Martinelli, G. and Pruneri, G. (2000) Inhibition of angiogenesis and induction of endothelial and tumor cell apoptosis by green tea in animal models of human high-grade non- Hodgkin's lymphoma. Leukemia 14, 1477-1482. https://doi.org/10.1038/sj.leu.2401854
  18. Bode, A. M. and Dong, Z. (2000) Signal transduction pathways: Targets for chemoprevention of skin cancer. Lancet Oncology 1, 181-188. https://doi.org/10.1016/S1470-2045(00)00029-2
  19. Boulton, T. G., Nye, S. H., Robbins, D. J., lp, N. Y., Radziejewska, E., Morgenbesser, S. D., DePinho, R. A., Panayotatos. N., Cobb, M. H. and Yancopoulos. G. D. (1991) Erks: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663-675. https://doi.org/10.1016/0092-8674(91)90098-J
  20. Brown, M. D. (1999) Green tea (camellia sinensis) extract and its possible role in the prevention of cancer. Altern. Med. Rev. 4, 360-370.
  21. Chen, C., Yu, R., Owuor, E. D. and Kong, A. N. (2000a) Activation of antioxidant-response element (are), mitogen-activated protein kinases (mapks) and caspases by major green tea polyphenol components during cell survival and death. Arch. Pharm. Res. 23, 605-612. https://doi.org/10.1007/BF02975249
  22. Chen, N. Y., Ma, W. Y., Yang. C. S. and Dong. Z. (2000b) Inhibition of arsenite-induced apoptosis and AP-1 activity by epigallocatechin-3-gallate and theaflavins. J. Environ. Pathol. Toxicol. Oncol. 19.287-295.
  23. Chen. W., Borchers, A. H., Dong. Z., Powell, M. B. and Bowden, G. T. (1998) UVB irradiation-induced activator protein-1 activation correlates with increased c-fos gene expression in a human keratinocyte cell line. J. Biol. Chem. 273. 32176-32181. https://doi.org/10.1074/jbc.273.48.32176
  24. Chen. W., Dong. Z., Valeic. S., Timmermann. B. N. and Bowden. G. T. (1999a) Inhibition of ultraviolet B--induced c-fos gene expression and p38 mitogen-activated protein kinase activation by (-)-epigallocatechin gallate in a human keratinocyte cell line. Mol. Carcinog. 24, 79-84. https://doi.org/10.1002/(SICI)1098-2744(199902)24:2<79::AID-MC1>3.0.CO;2-E
  25. Chen. Y. C., Liang. Y. C., Lin-Shiau. S. Y., Ho, C. T. and Lin. J. K. (1999b) Inhibition of TPA-induced protein kinase c and transcription activator protein-1 binding activities by theaflavin- 3,3'-digallate from black tea in nih3t3 cells. J. Agric. Food Chem. 47. 1416-1421. https://doi.org/10.1021/jf981099k
  26. Chung. J. Y., Huang, C.. Meng. X., Dong. Z. and Yang. C. S. (1999) Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: Structure-activity relationship and mechanisms involved. Cancer Res. 59,4610-4617.
  27. Chung. J. Y.. Park. J. O., Phyu, H., Dong, Z. and Yang. C. S. (200la) Mechanisms of inhibition of the ras-MAP kinase signaling pathway in 30.7b ras 12 cells by tea polyphenols (-)-epigallocatechin- 3-gallate and theaflavin-3,3'-digallate. FASEB J. 15, 2022-2024. https://doi.org/10.1096/fj.01-0031fje
  28. Chung, L. Y., Cheung. T. C., Kong. S. K., Fung. K. P., Choy. Y. M., Chan. Z. Y. and Kwok, T. T. (2001b) Induction of apoptosis by green tea catechins in human prostate cancer DU145 cells. Life Sci. 68, 1207-1214. https://doi.org/10.1016/S0024-3205(00)01020-1
  29. Cohen, D. R. and Curran, T. (1988) Fra-1: A serum-inducible, cellular immediate-early gene that encodes a fos-related antigen. Mol. Cell. Biol. 8, 2063-2069. https://doi.org/10.1128/MCB.8.5.2063
  30. Colburn. N. H., Former. B. F.. Nelson. K. A. and Yuspa. S. H. (1979) Thmour promoter induces anchorage independence irreversibly. Nature 281. 589-591. https://doi.org/10.1038/281589a0
  31. Colburn. N. H., Wendel. E. and Srinivas, L. (1982) Responses of preneoplastic epidermal cells to tumor promoters and growth factors: Use of promoter-resistant variants for mechanism studies. J. Cell. Biochem. 18. 261-270. https://doi.org/10.1002/jcb.1982.240180302
  32. Cowley. S., Paterson. H., Kemp, P. and Marshall. C. J. (1994) Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77, 841-852. https://doi.org/10.1016/0092-8674(94)90133-3
  33. Crawford, H. C. and Matrisian, L. M. (1996) Mechanisms controlling the transcription of matrix metalloproteinase genes in normal and neoplastic cells. Enzyme Protein 49, 20-37. https://doi.org/10.1159/000468614
  34. Cutter, H., Wu, L. Y., Kim, C., Morre, D. J. and Morre, D. M. (2001) Is the cancer protective effect correlated with growth inhibitions by green tea (-)-epigallocatechin gallate mediated through an antioxidant mechanism? Cancer Lett. 162. 149-154. https://doi.org/10.1016/S0304-3835(00)00631-5
  35. Davis, R. J. (1994) MAPKs: New JNK expands the group. Trends Biochem. Sci. 19, 470-473. https://doi.org/10.1016/0968-0004(94)90132-5
  36. Dong, Z., BiITer, M. J., Watts, R. G., Matrisian, L. M. and Colburn, N. H. (1994) Blocking of tumor promoter-induced AP-1 activity inhibits induced transformation in JB6 mouse epidermal cells. Proc. Natl. Acad. Sci. USA 91, 609-613. https://doi.org/10.1073/pnas.91.2.609
  37. Dong, Z., Huang, C., Brown. R. E. and Ma. W. Y. (1997a) Inhibition of activator protein 1 activity and neoplastic transformation by aspirin. J. Biol. Chem. 272. 9962-9970. https://doi.org/10.1074/jbc.272.15.9962
  38. Dong, Z., Ma, W., Huang. C. and Yang. C. S. (l997b) Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols. (-)-epigallocatechin gallate. and theaflavins. Cancer Res. 57. 4414-4419.
  39. Dong, Z., Nomura, M., Huang. C. and Ma, W. Y. (2001) Effects of tea polyphenols on the signal. transduction pathways. Adv. Exp. Med BioI. 492. 55-67. https://doi.org/10.1007/978-1-4615-1283-7_6
  40. Dong. Z., Watts, S. G., Sun, Y. and Colburn. N. H. (1995) Progressive elevation of AP-1 activity during preneoplastic-to neoplastic progression as modeled in mouse JB6 cell variants. Int. J. Oncol. 7. 359-364.
  41. Fujiki, H. (1999) Two stages of cancer prevention with green tea. J. Cancer Res. Clin. Oncol. 125, 589-597. https://doi.org/10.1007/s004320050321
  42. Gilmore, T. D. (1997) Clinically relevant findings [editorial]. J. Clin. Invest. 100. 2935-2936.
  43. Gupta, S., Ahmad, N. and Mukhtar. H. (1999) Prostate cancer chemoprevention by green tea. Semin. Urol. Oncol. 17, 70-76.
  44. Gupta. S., Ahmad. N., Nieminen, A. L. and Mukhtar. H. (2000) Growth inhibition. cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells. Toxicol. Appl. Pharmacol. 164. 82-90. https://doi.org/10.1006/taap.1999.8885
  45. Gupta. S. and Mukhtar, H. (2002) Green tea and prostate cancer. Urol. Clin. North Am. 29, 49-57, viii. https://doi.org/10.1016/S0094-0143(02)00016-2
  46. Guyton, K. Z. and Kensler, T. W. (2002) Prevention of liver cancer. Curr. Oncol. Rep. 4, 464-470.. https://doi.org/10.1007/s11912-002-0057-4
  47. Hagerman, A. E. aNd Butler. L. G. (1981) The specificity of proanthocyanidin-protein interactions. J. Biol. Chem. 256, 4494-4497.
  48. Halazonetis, T. D., Georgopoulos. K., Greenberg, M. E. and Leder, P. (1988) C-jun dimerizes with itself and with c-fos, forming complexes of different DNA binding affinities. Cell 55, 917-924. https://doi.org/10.1016/0092-8674(88)90147-X
  49. Hayakawa, S., Kimura, T., Saeki, K., Koyama, Y., Aoyagi, Y., Noro, T., Nakamura, Y. and Isemura, M. (200la) Apoptosis- inducing activity of high molecular weight fractions of tea extracts. Biosci. Biotechnol. Biochem. 65, 459-462. https://doi.org/10.1271/bbb.65.459
  50. Hayakawa, S., Saeki. K., Sazuka, M., Suzuki. Y., Shoji. Y., Ohta, T., Kaji, K., Yuo, A. and Isemura. M. (200 1 b) Apoptosis induction by epigallocatechin gallate involves its binding to Fas. Biochern. Biophys. Res. Commun. 285, 1102-1106.
  51. Hirai. S. I.. Ryseck, R. P., Mechta. E, Bravo, R. and Yaniv. M. (1989) Characterization of jund: A new member of the jun proto-oncogene family. EMBO J. 8, 1433-1439.
  52. Huang, C., Ma, W. Y., Dawson, M. I., Rincon. M., Flavell, R. A. and Dong. Z. (1997a) Blocking activator protein-1 activity, but not activating retinoic acid response element, is required for the antitumor promotion effect of retinoic acid. Proc. Natl. Acad. Sci. USA 94, 5826-5830. https://doi.org/10.1073/pnas.94.11.5826
  53. Huang. C., Ma, W. Y., Young, M. R., Colburn, N. and Dong, Z. (1998) Shortage of mitogen-activated protein kinase is responsible for resistance to AP-1 transactivation and transformation in mouse JB6 cells. Proc. Natl. Acad. Sci. USA 95, 156-161. https://doi.org/10.1073/pnas.95.1.156
  54. Huang, C., Schmid, P. C., Ma, W. Y., Schmid, H. H. and Dong, Z. (1997b) Phosphatidylinositol-3 kinase is necessary for 12-O- tetradecanoylphorbol-13-acetate-induced cell transfonnation and activated protein 1 activation. J. Biol. Chem. 272, 4187-4194. https://doi.org/10.1074/jbc.272.7.4187
  55. Ichihashi, M., Ahmed, N. U., Budiyanto, A., Wu, A., Bito, T., Ueda, M. and Osawa, T. (2000) Preventive effect of antioxidant on ultraviolet-induced skin cancer in mice. J. Dermatol. Sci. 23 Suppl 1. S45-50. https://doi.org/10.1016/S0923-1811(00)00083-9
  56. Islam, S., Islam. N., Kermode. T.. Johnstone, B., Mukhtar, H., Moskowitz, R. W., Goldberg, V. M., Malemud, C. J. and Haqqi, T. M. (2000) Involvement of caspase-3 in epigallocatechin-3-gallate-mediated apoptosis of human chondrosarcoma cells. Biochem. Biophys. Res. Commun. 270, 793-797. https://doi.org/10.1006/bbrc.2000.2536
  57. Jin. C. F., Shen, S. R., Sr. and Zhao, B. L. (2001) Different effects of five catechins on 6-hydroxydopamine-induced apoptosis in PC12 cells. J. Agric. Food. Chem. 49,6033-6038. https://doi.org/10.1021/jf010903r
  58. Johnson. M. K. and Loo, G. (2000) Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA. Mutat. Res. 459. 211-218. https://doi.org/10.1016/S0921-8777(99)00074-9
  59. Jovanovic, S. V. and Simic. M. G. (2000) Antioxidants in nutrition. Ann. NY Acad. Sci. 899, 326-334. https://doi.org/10.1111/j.1749-6632.2000.tb06197.x
  60. Kallunki, T., Su, B., Tsigelny, I., Sluss, H. K., Derijard, B., Moore, G., Davis, R. and Karin, M. (1994) JNK2 contains a specificity-determining region responsible for efficient c-jun binding and phosphorylation. Genes Dev. 8, 2996-3007. https://doi.org/10.1101/gad.8.24.2996
  61. Karin, M. (1998) The NF-kappa B activation pathway: Its regulation and role in inflammation and cell survival. Cancer J. Sci. Am. 4 Suppl 1. S92-99.
  62. Karin, M. and Ben-Neriah, Y. (2000) Phosphorylation meets ubiquitination: The control of NF-$\kappa$B activity. Annu. Rev. Immunol. 18. 621-663. https://doi.org/10.1146/annurev.immunol.18.1.621
  63. Karin. M. and Delhase. M. (2000) The I kappa B kinase (lKK) and NF-kappa B: Key elements of proinflammatory signalling. Semin. Immunol. 12. 85-98. https://doi.org/10.1006/smim.2000.0210
  64. Katiyar. S. K., Afaq, F., Azizuddin, K. and Mukhtar, H. (200la) Inhibition of UYB-induced oxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol (-)-epigallocatechin-3-gallate. Toxicol. Appl. Pharmacol. 176. 110-117.
  65. Katiyar, S. K.. Ahmad, N. and Mukhtar, H. (2000) Green tea and skin. Arch. Dermatol. 136, 989-994. https://doi.org/10.1001/archderm.136.8.989
  66. Katiyar, S. K., Bergamo, B. M., Yyalil, P. K. and Elmets, C. A. (2001 b) Green tea polyphenols: DNA photodamage and photoimmunology. J. Photochem. Photobiol. B 65, 109-114.
  67. Katiyar, S. K. and Elmets. C. A. (2001) Green tea polyphenolic antioxidants and skin photoprotection (review). Int. J. Oncol. 18. 1307-1313.
  68. Katiyar, S. K.. Matsui, M. S., Elmets, C. A. and Mukhtar, H. (1999) Polyphenolic antioxidant (-)-epigallocatechin-3-gallate from green tea reduces UYB-induced inflammatory responses and infiltration of leukocytes in human skin. Photochem. Photobiol. 69, 148-153.
  69. Kennedy, D.O., Kojima, A., Hasuma, T., Yano, Y., Otani, S. and Matsui-Yuasa, I. (2001) Growth inhibitory effect of green tea extract and (-)-epigallocatechin in ehrlich ascites tumor cells involves a cellular thiol-dependent activation of mitogenic-activated protein kinases. Chem.-Biol. Interact. 134, 113-133. https://doi.org/10.1016/S0009-2797(00)00251-9
  70. Kennedy. D.O., Kojima, A., Moffatt, J., Yamagiwa, H., Yano, Y., Hasuma, T., Otani, S. and Matsui-Yuasa, I. (2002) Cellular thiol status-dependent inhibition of tumor cell growth via modulation of retinoblastoma protein phosphorylation by (-)-epigallocatechin. Cancer Lett. 179, 25-32. https://doi.org/10.1016/S0304-3835(01)00856-4
  71. Kennedy. D.O., Matsumoto, M., Kojima, A. and Matsui-Yuasa, I. (1999) Cellular thiols status and cell death in the effect of green tea polyphenols in ehrlich ascites tumor cells. Chem.-Biol. Interact. 122, 59-71. https://doi.org/10.1016/S0009-2797(99)00114-3
  72. Kbarbanda, S., Saxena, S., Yoshida, K., Pandey, P., Kaneki, M., Wang, Q., Cheng, K., Chen, Y. N., Campbell, A., Sudha, T., Yuan, Z. M., Narula, J., Weichselbaum, R., Nalin, C. and Kufe, D. (2000) Translocation of SAPK/JNK to mitochondria and interaction with Bel-$X_{L}$ in response to DNA damage. J BioI. Chem. 275, 322-327. https://doi.org/10.1074/jbc.275.1.322
  73. Kondo, K., Kurihara, M., Miyata, N., Suzuki, T. and Toyoda, M. (1999) Mechanistic studies of catechins as antioxidants against radical oxidation. Arch. Biochem. Biophys. 362, 79-86. https://doi.org/10.1006/abbi.1998.1015
  74. Kong, A. N., Owuor, E., Yu, R., Hebbar, V., Chen, C., Hu, R. and Mandlekar, S. (2001) Induction of xenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophile response element (ARE/EPRE). Drug. Metab. Rev. 33, 255-271. https://doi.org/10.1081/DMR-120000652
  75. Kong, A. N.. Yu, R., Chen, C., Mandlekar, S. and Primiano, T. (2000) Signal transduction events elicited by natural products: Role of MAPK and caspase pathways in homeostatic response and induction of apoptosis. Arch. Pharm. Res. 23, 1-16. https://doi.org/10.1007/BF02976458
  76. Kuroda. Y. and Hara, Y. (1999) Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat. Res. 436, 69-97. https://doi.org/10.1016/S1383-5742(98)00019-2
  77. Kyriakis, J. M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E. A., Ahmad, M. F., Avruch, J. and Woodgett, J. R. (1994) The stress-activated protein kinase subfamily of c-jun kinases. Nature 369, 156-160. https://doi.org/10.1038/369156a0
  78. Langley-Evans, S. C. (2000) Consumption of black tea elicits an increase in plasma antioxidant potential in humans. Int. J. Food Sci. Nutr. 51, 309-315. https://doi.org/10.1080/096374800426902
  79. Le Marchand, L. (2002) Cancer preventive effects of flavonoids--a review. Biomed. Pharmacother. 56, 296-301. https://doi.org/10.1016/S0753-3322(02)00186-5
  80. Li, H. C., Yashiki, S., Sonoda, J., Lou, H., Ghosh, S. K., Bymes, J. J., Lema, C., Fujiyoshi, T., Karasuyama, M. and Sonoda, S. (2000) Green tea polyphenols induce apoptosis in vitro in peripheral blood t lymphocytes of adult T-cell leukemia patients. Jpn. J. Cancer Res. 91, 34-40. https://doi.org/10.1111/j.1349-7006.2000.tb00857.x
  81. Li, J. J., Westergaard, C., Ghosh, P. and Colburn, N. H. (1997) Inhibitors of both nuclear factor-kappaB and activator protein-1 activation block the neoplastic transformation response. Cancer Res. 57, 3569-3576.
  82. Liang, Y. C., Chen, Y. C., Lin, Y. L., Lin-Shiau, S. Y., Ho, C. T. and Lin, J. K. (1999) Suppression of extracellular signals and cell proliferation by the black tea polyphenol, theaflavin-3,3'digallate [published erratum appears in Carcinogenesis (1999) JUL; 20(7): 1383]. Carcinogenesis 20, 733-736. https://doi.org/10.1093/carcin/20.4.733
  83. Liberto, M. and Cobrinik, D. (2000) Growth factor-dependent induction of p21(C1P1) by the green tea polyphenol, epigallocatechin gallate. Cancer Lett. 154, 151-161. https://doi.org/10.1016/S0304-3835(00)00378-5
  84. Lin, J. K., Chen, P. C., Ho, C. T. and Lin-Shiau, S. Y. (2000) Inhibition of xanthine oxidase and suppression of intracellular reactive oxygen species in HL-60 cells by theaflavin-3,3'digallate, (-)-epigallocatechin-3-gallate. and propyl gallate. J. Agric. Food Chem. 48, 2736-2743. https://doi.org/10.1021/jf000066d
  85. Lin, J. K. and Liang, Y. C. (2000) Cancer chemoprevention by tea polyphenols. Proc. Natl. Sci. Counc. Repub. China B 24, 1-13.
  86. Lin, Y. L. and Lin, J. K. (1997) (-)-epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down- regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappab. Mol. Pharmacol. 52, 465-472. https://doi.org/10.1124/mol.52.3.465
  87. Lin, Y. L., Tsai, S. H., Lin-Shiau, S. Y., Ho, C. T. and Lin, J. K. (1999) Theaflavin-3,3'-digallate from black tea blocks the nitric oxide synthase by down-regulating the activation of nf-kappab in macrophages. Eur. J. Pharmacol. 367, 379-388. https://doi.org/10.1016/S0014-2999(98)00953-4
  88. Liu, G., Chen, N., Kaji, A., Bode, A. M., Ryan, C. A. and Dong, Z. (2001) Proteinase inhibitors I and II from potatoes block UVB-induced AP-1 activity by regulating the AP-1 protein compositional patterns in JB6 cells. Proc. Natl. Acad. Sci. USA 98, 5786-5791. https://doi.org/10.1073/pnas.101116298
  89. Liu, Z., Ma, L. P., Zhou, B., Yang, L. and Liu, Z. L. (2000) Antioxidative effects of green tea polyphenols on free radical initiated and photosensitized peroxidation of human low density lipoprotein. Chem. Phys. Lipids 106, 53-63. https://doi.org/10.1016/S0009-3084(00)00133-X
  90. Lou, Y. R, Lu, Y. P., Xie, J. G., Huang, M. T. and Cooney, A. H. (1999) Effects of oral administration of tea, decaffeinated tea, and caffeine on the formation and growth of tumors in high- risk SKH-1 mice previously treated with ultraviolet B light. Nutr. Cancer 33, 146-153. https://doi.org/10.1207/S15327914NC330205
  91. Lu, J., Ho, C. T., Ghai, G. and Chen, K. Y. (2000a) Differential effects of theaflavin monogallates on cell growth, apoptosis, and cox-2 gene expression in cancerous versus normal cells. Cancer Res. 60, 6465-6471.
  92. Lu, Y. P., Lou, Y. R., Li, X. H., Xie, J. G., Brash, D., Huang, M. T. and Conney, A. H. (2000b) Stimulatory effect of oral administration of green tea or caffeine on ultraviolet light- induced increases in epidermal wild-type p53, p21(waf1/cip1), and apoptotic sunburn cells in skh-1 mice. Cancer Res. 60, 4785-4791.
  93. Lu, Y. P., Lou, Y. R, Xie, J. G., Yen, P., Huang, M. T. and Cooney, A. H. (1997) Inhibitory effect of black tea on the growth of established skin tumors in mice: Effects on tumor size, apoptosis, mitosis and bromodeoxyuridine incorporation into DNA. Carcinogenesis 18, 2163-2169. https://doi.org/10.1093/carcin/18.11.2163
  94. Luck, G., Liao, H., Murray, N. J., Grimmer, H. R, Warminski, E. E., Williamson, M. P., Lilley, T. H. and Haslam, E. (1994) Polyphenols, astringency and proline-rich proteins. Phytochemistry 37, 357-371. https://doi.org/10.1016/0031-9422(94)85061-5
  95. Maliakal, P. P., Coville, P. F. and Wanwimolruk, S. (2001) Tea consumption modulates hepatic drug metabolizing enzymes in wistar rats. J. Pharm. Pharmacol. 53, 569-577. https://doi.org/10.1211/0022357011775695
  96. Manson, M. M., Holloway, K. A., Howells, L. M., Hudson, E. A., Plummer, S. M., Squires, M. S. and Prigent, S. A. (2000) Modulation of signal-transduction pathways by chemopreventive agents. Biochem. Soc. Trans. 28, 7-12. https://doi.org/10.1042/bst0280007
  97. Masuda, M., Suzui, M. and Weinstein, I. B. (2001) Effects of epigallocatechin-3-gallate on growth, epidermal growth factor receptor signaling pathways, gene expression, and chemosensitivity in human head and neck squamous cell carcinoma cell lines. Clin. Cancer Res. 7, 4220-4229.
  98. McCarty, M. F. (1998) Polyphenol-mediated inhibition of AP-1 transactivating activity may slow cancer growth by impeding angiogenesis and tumor invasiveness. Med. Hypotheses 50, 511-514. https://doi.org/10.1016/S0306-9877(98)90273-0
  99. McManus, J. P., Davis, K. G., Beart, J. E., Gaffney, S. H., Lilley, T. H. and Haslam, E. (1985) Polyphenol interactions. Part 1, introduction: Some observations on the reversible complexation of polyphenols with proteins and polysaccharides. J. Chem. Soc. Perkin Trans. II, 1429-1438.
  100. Mehansho, H .. Ann, D. K., Butler, L. G., Rogier, J. and Carlson, D. M. (l987a) Induction of proline-rich proteins in hamster salivary glands by isoproterenol treatment and an unusual growth inhibition by tannins. J. Biol. Chem. 262, 12344-12350.
  101. Mehansho, H., Butler, L. G. and Carlson, D. M. (l987b) Dietary tannins and salivary proline-rich proteins: Interactions, induction, and defense mechanisms. Annu. Rev. Nutr. 7, 423- 440. https://doi.org/10.1146/annurev.nu.07.070187.002231
  102. Minden, A., Lin, A., McMahon, M., Lange-Carter, C., Derijard, B., Davis, R. J., Johnson, G. L. and Karin, M. (1994) Differential activation of ERK and JNK mitogen-activated protein kinases by RAF-1 and MEKK. Science 266, 1719- 1723. https://doi.org/10.1126/science.7992057
  103. Mukhtar, H. and Ahmad, N. (1999) Green tea in chemoprevention of cancer. Toxicol. Sci. 52, 111-117. https://doi.org/10.1093/toxsci/52.2.111
  104. Mure, K. and Rossman, T. G. (2001) Reduction of spontaneous mutagenesis in mismatch repair-deficient and proficient cells by dietary antioxidants. Mutat. Res. 480-481, 85-95.
  105. Murray, N. J. and Williamson, M. P. (1994) Conformational study of a salivary proline-rich protein repeat sequence. Eur. J. Biochem. 219,915-921. https://doi.org/10.1111/j.1432-1033.1994.tb18573.x
  106. Murray, N. J., Williamson, M. P., Lilley, T. H. and Haslam, E. (1994) Study of the interaction between salivary proline-rich proteins and a polyphenol by $1_{H}$-nmr spectroscopy. Eur. J. Biochem. 219, 923-935. https://doi.org/10.1111/j.1432-1033.1994.tb18574.x
  107. Muto, S., Yokoi, T., Gondo, Y., Katsuki, M., Shioyama, Y., Fujita, K. and Kamataki, T. (1999) Inhibition of benzo[a]pyrene- induced mutagenesis by (-)- epigallocatechin gallate in the lung of rpsl transgenic mice. Carcinogenesis 20, 421-424. https://doi.org/10.1093/carcin/20.3.421
  108. Nam, S., Smith, D. M. and Dou, Q. P. (2001) Ester bond- containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J. BioI. Chem. 276, 13322-13330. https://doi.org/10.1074/jbc.M004209200
  109. Nomura, M., Kaji, A., He, Z., Ma, W. Y., Miyamoto, K., Yang, C. S. and Dong, Z. (2001) Inhibitory mechanisms of tea polyphenols on the ultraviolet B-activated phosphatidylinositol 3-kinase-dependent pathway. J. BioI. Chem. 276, 46624-46631. https://doi.org/10.1074/jbc.M107897200
  110. Nomura, M., Ma, W., Chen, N., Bode, A. M. and Dong, Z. (2000a) Inhibition of 12-O-tetradecanoylphorbol-13-acetate- induced NF-kappaB activation by tea polyphenols, (-)-epigallocatechin gallate and theaflavins. Carcinogenesis 21, 1885-1890. https://doi.org/10.1093/carcin/21.10.1885
  111. Nomura, M., Ma, W. Y., Huang, C., Yang, C. S., Bowden, G. T., Miyamoto, K. and Dong, Z. (2000b) Inhibition of ultraviolet b- induced AP-1 activation by theaflavins from black tea. Mol. Carcinog. 28, 148-155. https://doi.org/10.1002/1098-2744(200007)28:3<148::AID-MC3>3.0.CO;2-Q
  112. Owuor, E. D. and Kong, A. N. (2002) Antioxidants and oxidants regulated signal transduction pathways. Biochem. Pharmacol. 64, 765-770. https://doi.org/10.1016/S0006-2952(02)01137-1
  113. Pan, M. H., Lin-Shiau, S. Y., Ho, C. T., Lin, J. H. and Lin, J. K. (2000) Suppression of lipopolysaccharide-induced nuclear factor-kappaB activity by theaflavin-3,3'-digallate from black tea and other polyphenols through down-regulation of IkappaB kinase activity in macrophages. Biochem. Pharmacol. 59, 357-367. https://doi.org/10.1016/S0006-2952(99)00335-4
  114. Park, J. W., Choi, Y. J., Suh, S. I. and Kwon, T. K. (2001) Involvement of ERK and protein tyrosine phosphatase signaling pathways in EGCG-induced cyclooxygenase-2 expression in Raw 264.7 cells. Biochem. Biophys. Res. Commun. 286, 721-725. https://doi.org/10.1006/bbrc.2001.5415
  115. Pianetti, S., Guo. S., Kavanagh, K. T. and Sonenshein, G. E. (2002) Green tea polyphenol epigallocatechin-3 gallate inhibits HER-2/neu signaling, proliferation, and transformed phenotype of breast cancer cells. Cancer Res. 62, 652-655.
  116. Rushmore, T. H. and Kong. A. N. (2002) Phannacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr. Drug Metah. 3, 481-490. https://doi.org/10.2174/1389200023337171
  117. Sakagami, H., Yokote, Y. and Akahane, K. (2001) Changes in amino acid pool and utilization during apoptosis in HL-60 cells induced by epigallocatechin gallate or gallic acid. Anticancer Res. 21, 2441-2447.
  118. Schulze-Osthoff, K, Ferrari, D., Riehemann, K. and Wesselborg, S. (1997) Regulation of NF-kappa B activation by MAP kinase cascades. Immunobiology 198, 35-49. https://doi.org/10.1016/S0171-2985(97)80025-3
  119. Shi, X., Ye, J., Leonard, S. S., Ding, M., Vallyathan, V., Castranova. V., Rojanasakul, Y. and Dong, Z. (2000) Antioxidant properties of (-)-epicatechin-3-gallate and its inhibition of CR (VI)-induced DNA damage and Cr (IV)- or TPA-stimulated NF-kappaB activation. Mol. Cell. Biochem. 206, 125-132. https://doi.org/10.1023/A:1007012403691
  120. Sun. Y., NakamurJ. K, Hegamyer, G., Dong, Z. and Colburn, N. (1993) No point mutation of Ha-ras or p53 genes expressed in preneoplastic-to-neoplastic progression as modeled in mouse JB6 cell variants. Mol. Carcinog. 8, 49-57. https://doi.org/10.1002/mc.2940080111
  121. Tan, X., Hu, D., Li, S., Han, Y., Zhang, Y. and Zhou, D. (2000) Differences of four catechins in cell cycle arrest and induction of apoptosis in Lovo cells. Cancer Lett 158, 1-6. https://doi.org/10.1016/S0304-3835(00)00445-6
  122. Tan, X., Zhang, Y., Jiang, B. and Zhou, D. (2002) Changes in ceramide levels upon catechins-induced apoptosis in Lovo cells. Life Sci. 70, 2023-2029. https://doi.org/10.1016/S0024-3205(01)01543-0
  123. Trevisanato, S. I. and Kim, Y. I. (2000) Tea and health. Nutr. Rev. 58, 1-10. https://doi.org/10.1111/j.1753-4887.2000.tb01818.x
  124. von Pressentin, d. M. M., Chen, M. and Guttenplan. J. B. (2001) Mutagenesis induced by 4(methylnitrosamino )-1-(3-pyridyl)-1-butanone-4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and N-nitrosonornicotine in lacZ upper aerodigestive tissue and liver and inhibition by green tea. Carcinogenesis 22, 203-206. https://doi.org/10.1093/carcin/22.1.203
  125. Wang, H. K. (2000) The therJpeutic potential of flavonoids. Expert Opin. Investig. Drugs 9, 2103-2119. https://doi.org/10.1517/13543784.9.9.2103
  126. Watts, R G.. Huang. C., Young. M. R, Li, J. J.. Dong, Z., Pennie, W. D. and Colburn, N. H. (1998) Expression of dominant negative ERK2 inhibits AP-1 transactivation and neoplastic transformation. Oncogene 17, 3493-3498. https://doi.org/10.1038/sj.onc.1202259
  127. Weisburger, J. H. (l999a) Mechanisms of action of antioxidants as exemplified in vegetables, tomatoes and tea. Food Chem. Toxicol. 37, 943-948. https://doi.org/10.1016/S0278-6915(99)00086-1
  128. Weisburger. J. H. (1999b) Tea and health: The underlying mechanisms. Proc. Soc. Exp. Bioi. Med. 220, 271-275. https://doi.org/10.1046/j.1525-1373.1999.d01-46.x
  129. Weisburger, J. H. and Chung, F. L. (2002) Mechanisms of chronic disease causation by nutritional factors and tobacco products and their prevention by tea polyphenols. Food Chem. Toxicol. 40, 1145-1154. https://doi.org/10.1016/S0278-6915(02)00044-3
  130. Wiseman, S., Mulder, T. and Rietveld. A. (2001) Tea flavonoids: Bioavailability in vivo and effects on cell signaling pathways in vitro. Antioxid. Redox Signal. 3, 1009-1021.
  131. Yang, C. S., Chung, J. Y., Yang, G., Chhabra, S. K. and Lee, M. J. (2000a) Tea and tea polyphenols in cancer prevention. J. Nutr. 130, 472S-478S. https://doi.org/10.1093/jn/130.2.472S
  132. Yang, C. S., Maliakal, P. and Meng, X. (2002) Inhibition of carcinogenesis by tea. Annu. Rev. Phannacol. Toxicol. 42, 25-54. https://doi.org/10.1146/annurev.pharmtox.42.082101.154309
  133. Yang, G. Y., Liao, J., Li, C, Chung, J., Yurkow, E. J., Ho, C. T. and Yang, C. S. (2000b) Effect of black and green tea polyphenols on c-jun phosphorylation and $H_{2}O_{2}$ production in transformed and non-transformed human bronchial cell lines: Possible mechanisms of cell growth inhibition and apoptosis induction. Carcinogenesis 21, 2035-2039. https://doi.org/10.1093/carcin/21.11.2035
  134. Yu, R, Jiao, J. J., Duh, J. L., Gudehithlu, K.. Tan, T. H. and Kong, A. N. (1997) Activation of mitogen-activated protein kinases by green tea polyphenols: Potential signaling pathways in the regulation of antioxidant-responsive element-mediated phase II enzyme gene expression. Carcinogenesis 18, 451 -456. https://doi.org/10.1093/carcin/18.2.451
  135. Zhang, W., Hashimoto, K., Yu, G. Y. and Sakagami, H. (2002) Decline of superoxide dismutase activity during antioxidant- induced apoptosis in HL-60 cells. Anticancer Res. 22, 219-224.

Cited by

  1. Differential Alterations in Metabolic Pattern of the Spliceosomal UsnRNAs during Pre-Malignant Lung Lesions Induced by Benzo(a)pyrene: Modulation by Tea Polyphenols vol.289, pp.1-2, 2006, https://doi.org/10.1007/s11010-006-9158-y
  2. NF-κB and AP-1 as molecular targets for chemoprevention with EGCG, a review vol.4, pp.3, 2006, https://doi.org/10.1007/s10311-006-0063-0
  3. The modulation of endothelial cell gene expression by green tea polyphenol-EGCG vol.52, pp.10, 2008, https://doi.org/10.1002/mnfr.200700499
  4. Health, Wellness, and Safety Aspects of the Consumption of Kombucha vol.2015, 2015, https://doi.org/10.1155/2015/591869
  5. Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications vol.78, pp.18, 2006, https://doi.org/10.1016/j.lfs.2005.12.006
  6. Dietary Effects of Post-fermented Green Tea by Monascus pilosus on the Body Weight, Serum Lipid Profiles and the Activities of Hepatic Antioxidative Enzymes in Mouse Fed a High Fat Diet vol.55, pp.2, 2012, https://doi.org/10.3839/jabc.2011.064
  7. Opposing action of curcumin and green tea polyphenol in human keratinocytes vol.50, pp.2, 2006, https://doi.org/10.1002/mnfr.200500125
  8. Attenuated mitochondrial NADP+-dependent isocitrate dehydrogenase activity enhances EGCG-induced apoptosis vol.93, pp.10, 2011, https://doi.org/10.1016/j.biochi.2011.06.025
  9. Chemoprevention of fibroid tumors by [−]-epigallocatechin-3-gallate in quail vol.28, pp.2, 2008, https://doi.org/10.1016/j.nutres.2007.11.009
  10. Targeting signal transduction pathways by chemopreventive agents vol.555, pp.1-2, 2004, https://doi.org/10.1016/j.mrfmmm.2004.05.018
  11. Theaflavin-3, 3'-digallate Inhibits Tube Formation in Cocultured Endothelial Cells with Fibroblasts vol.19, pp.2, 2007, https://doi.org/10.15369/sujms1989.19.59
  12. Black tea: Phytochemicals, cancer chemoprevention, and clinical studies vol.57, pp.7, 2017, https://doi.org/10.1080/10408398.2014.994700
  13. Hormetic Dietary Phytochemicals vol.10, pp.4, 2008, https://doi.org/10.1007/s12017-008-8037-y
  14. Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cells vol.218, pp.2, 2005, https://doi.org/10.1016/j.canlet.2004.06.007
  15. Epigallocatechin-3-gallate and penta-O-galloyl-β-d-glucose inhibit protein phosphatase-1 vol.280, pp.2, 2013, https://doi.org/10.1111/j.1742-4658.2012.08498.x
  16. Epigallocatechin gallate induced apoptosis in Sarcoma180 cells in vivo: Mediated by p53 pathway and inhibition in U1B, U4-U6 UsnRNAs expression vol.11, pp.12, 2006, https://doi.org/10.1007/s10495-006-0198-2
  17. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet vol.3, pp.2, 2012, https://doi.org/10.1039/C1FO10157A
  18. Molecular and cellular targets vol.45, pp.6, 2006, https://doi.org/10.1002/mc.20222
  19. Establishment of hot water extraction conditions for optimization of fermented Smilax china L. using response surface methodology vol.20, pp.5, 2013, https://doi.org/10.11002/kjfp.2013.20.5.668
  20. Cancer prevention by food factors through targeting signal transduction pathways vol.20, pp.1, 2004, https://doi.org/10.1016/j.nut.2003.09.016
  21. Tea Polyphenols Inhibit Rat Osteoclast Formation and Differentiation vol.118, pp.1, 2012, https://doi.org/10.1254/jphs.11082FP
  22. Pharmacological effects of green tea on the gastrointestinal system vol.500, pp.1-3, 2004, https://doi.org/10.1016/j.ejphar.2004.07.023
  23. Chemoprevention Against Arsenic-Induced Mutagenic DNA Breakage and Apoptotic Liver Damage in Rat Via Antioxidant and SOD1 Upregulation by Green Tea (Camellia sinensis) which Recovers Broken DNA Resulted from Arsenic-H2O2Related in Vitro Oxidant Stress vol.32, pp.4, 2014, https://doi.org/10.1080/10590501.2014.967061
  24. Nutraceutics and Delivery Systems vol.12, pp.6, 2004, https://doi.org/10.1080/10611860400003817
  25. Cytoprotective effects of silymarin on epithelial cells against arsenic-induced apoptosis in contrast with quercetin cytotoxicity vol.87, pp.9-10, 2010, https://doi.org/10.1016/j.lfs.2010.07.007
  26. Novel botanical ingredients for beverages vol.27, pp.2, 2009, https://doi.org/10.1016/j.clindermatol.2008.11.003
  27. Difference in growth suppression and apoptosis induction of EGCG and EGC on human promyelocytic leukemia HL-60 cells vol.32, pp.4, 2009, https://doi.org/10.1007/s12272-009-1410-z
  28. Proteasome inhibitors and modulators of heat shock protein function vol.1, pp.2, 2006, https://doi.org/10.1016/j.uct.2006.05.008
  29. Chemistry and health beneficial effects of oolong tea and theasinensins vol.4, pp.4, 2015, https://doi.org/10.1016/j.fshw.2015.10.002
  30. Epigallocatechin gallate inhibits intracellular survival of Listeria monocytogenes in macrophages vol.365, pp.2, 2008, https://doi.org/10.1016/j.bbrc.2007.10.190
  31. Covalent modification of proteins by green tea polyphenol (–)-epigallocatechin-3-gallate through autoxidation vol.45, pp.10, 2008, https://doi.org/10.1016/j.freeradbiomed.2008.07.023
  32. Epidemiological Evidence Linking Tea Consumption to Human Health: A Review vol.54, pp.4, 2014, https://doi.org/10.1080/10408398.2011.594184
  33. Repression of calcitonin gene-related peptide expression in trigeminal neurons by a Theobroma cacao extract vol.115, pp.2, 2008, https://doi.org/10.1016/j.jep.2007.09.028
  34. Transcriptional profiling in human HaCaT keratinocytes in response to kaempferol and identification of potential transcription factors for regulating differential gene expression vol.40, pp.2, 2008, https://doi.org/10.3858/emm.2008.40.2.208
  35. Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway vol.78, pp.1, 2009, https://doi.org/10.1016/j.bcp.2009.03.021
  36. Antioxidants regulate normal human keratinocyte differentiation vol.68, pp.6, 2004, https://doi.org/10.1016/j.bcp.2004.04.029
  37. The Chemopreventive Polyphenol Curcumin Prevents Hematogenous Breast Cancer Metastases in Immunodeficient Mice vol.19, pp.1-4, 2007, https://doi.org/10.1159/000099202
  38. Oolong tea made from tea plants from different locations in Yunnan and Fujian, China showed similar aroma but different taste characteristics vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-016-2229-y
  39. Tea catechins attenuate chronic ventricular remodeling after myocardial ischemia in rats vol.42, pp.2, 2007, https://doi.org/10.1016/j.yjmcc.2006.10.006
  40. Protection of dystrophic muscle cells with polyphenols from green tea correlates with improved glutathione balance and increased expression of 67LR, a receptor for (−)-epigallocatechin gallate vol.35, pp.3, 2009, https://doi.org/10.1002/biof.34
  41. Inhibition of 17α-Hydroxylase/C17,20-Lyase (CYP17) from Rat Testis by Green Tea Catechins and Black Tea Theaflavins vol.71, pp.9, 2007, https://doi.org/10.1271/bbb.70258
  42. Effects of tea polyphenols on telomerase activity of a tongue cancer cell line: a preliminary study vol.35, pp.4, 2006, https://doi.org/10.1016/j.ijom.2005.07.020
  43. Signal Transduction and Molecular Targets of Selected Flavonoids vol.19, pp.2, 2013, https://doi.org/10.1089/ars.2013.5251
  44. Polymeric black tea polyphenols modulate the localization and activity of 12-O-tetradecanoylphorbol-13-acetate-mediated kinases in mouse skin: Mechanisms of their anti-tumor-promoting action vol.53, pp.6, 2012, https://doi.org/10.1016/j.freeradbiomed.2012.07.017
  45. Kinetics and Mechanistic Studies on the Reaction between Cytochrome c and Tea Catechins vol.3, pp.3, 2014, https://doi.org/10.3390/antiox3030559
  46. Suppression of UVA-mediated release of labile iron by epicatechin—A link to lysosomal protection vol.41, pp.8, 2006, https://doi.org/10.1016/j.freeradbiomed.2006.06.008
  47. Effects of Theaflavins on Melanin Biosynthesis in Mouse B16 Melanoma Cells vol.73, pp.6, 2009, https://doi.org/10.1271/bbb.80880
  48. Chemopreventive potential of epigallocatechin gallate and genistein: evidence from epidemiological and laboratory studies vol.150, pp.1, 2004, https://doi.org/10.1016/j.toxlet.2003.06.001
  49. Effect of Theaflavin-3, 3'-digallate on Matrix Metalloproteinases in Mouse Chondrocytes vol.20, pp.2, 2008, https://doi.org/10.15369/sujms1989.20.97
  50. (−)-Epigallocatechin-3-gallate suppresses growth of AZ521 human gastric cancer cells by targeting the DEAD-box RNA helicase p68 vol.50, pp.10, 2011, https://doi.org/10.1016/j.freeradbiomed.2011.01.024
  51. Epigenetic Cancer Prevention Mechanisms in Skin Cancer vol.15, pp.4, 2013, https://doi.org/10.1208/s12248-013-9513-3
  52. Modulation of colonic inflammation in Mdr1a−/− mice by green tea polyphenols and their effects on the colon transcriptome and proteome vol.24, pp.10, 2013, https://doi.org/10.1016/j.jnutbio.2013.02.007