DOI QR코드

DOI QR Code

Histone Deacetylase in Carcinogenesis and Its Inhibitors as Anti-cancer Agents

  • Kim, Dong-Hoon (Department of Bioscience and Biotechnology, Institute of Bioscience, Sejong University) ;
  • Kim, Min-Jung (Department of Bioscience and Biotechnology, Institute of Bioscience, Sejong University) ;
  • Kwon, Ho-Jeong (Department of Bioscience and Biotechnology, Institute of Bioscience, Sejong University)
  • Published : 2003.01.31

Abstract

The acetylation state of histone is reversibly regulated by histone acetyltransferase (HAT) and deacetylase (HDAC). An imbalance of this reaction leads to an aberrant behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis. Recently, these key enzymes in the gene expression were cloned. They revealed a broad use of this modification, not only in histone, but also other proteins that involved transcription, nuclear transport, and cytoskeleton. These results suggest that HAT/HDAC takes charge of multiple-functions in the cell, not just the gene expression. HDAC is especially known to play an important role in carcinogenesis. The enzyme has been considered a target molecule for cancer therapy. The inhibition of HDAC activity by a specific inhibitor induces growth arrest, differentiation, and apoptosis of transformed or several cancer cells. Some of these inhibitors are in a clinical trial at phase I or phase II. The discovery and development of specific HDAC inhibitors are helpful for cancer therapy, and decipher the molecular mode of action for HDAC.

Keywords

References

  1. Abringer, J. (2000) NuRD and SIN3: histone deacetylase complexes in development. Trends Genet. 16, 351-356. https://doi.org/10.1016/S0168-9525(00)02066-7
  2. Anand, L., Muhie, R., Hou Jr., H., Potes, J., Chin, L., Schreiber-Agus, N., and DePinho, R. A. (1997) Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387, 49-55. https://doi.org/10.1038/387049a0
  3. Bannister, A. J., and Kouzarides, T. (1996) The CBP co-activator is a histone acetyltransferase. Nature 384, 641-643. https://doi.org/10.1038/384641a0
  4. Bannister, A. J., Miska, E., Gorlich, D., and Kouzarides, T. (2000) Acetylation of importin-alpha nuclear import factors by CBP/p300. Curr. Biol. 10, 467-70. https://doi.org/10.1016/S0960-9822(00)00445-0
  5. Bernstein, B. E., Tong, J. K., and Schreiber, S. L. (2000) Genomewide studies of histone deacetylase function in yeast. Proc. Natl. Acad. Sci. USA 97, 13708-13713. https://doi.org/10.1073/pnas.250477697
  6. Butler, L. M., Higgins, B., Fox, W. D., Agus, D. B., Cordon- Cardo, C., and Scher, H. J. (2000) Hybrid polar inhibitors of histone deacetylase suppress the growth of the CWR22 human prostate cancer xenograft. Proc. Am. Assoc. Cancer Res. 41, Abstract 2396.
  7. Carducci, M., Bowling, M. K, Eisenberger, M., Sinibaldi, V., Chen, T., and Nor, D. (1997) Phenylbutyrate (PB) for refractory solid tumors: Phase I clinical and pharmacologic evaluation of intravenous and oral PB. Anticancer Res. 17, 3972-3973.
  8. Chen, H., Lin, J. R., Xie, W., Wilpitz, D., and Evans, M. R. (1999) Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98, 675-686. https://doi.org/10.1016/S0092-8674(00)80054-9
  9. Choi, J. H., Kwon, H. J., Yoon, B. I., Kim, J. H., Han, S. U., Joo, H. J., and Kim, D. Y. (2001) Expression Profile of Histone Deacetylasel in Gastric Cancer Tissues. Jpn. J. Cancer Res. 92, 1300-1304. https://doi.org/10.1111/j.1349-7006.2001.tb02153.x
  10. Cohen, L. A., Amin, S., Marks, P. A., Rifkind, R. A., Desai, D., and Richon, V. M. (1999) Chemoprevention of carcinogen-induced mammary tumorigenesis by the hybrid polar cytodifferentiation agent, suberanilohydroxamic acid (SAHA). Anticancer Res. 19, 4999-5005.
  11. Cress, W. D., and Seto, E., (2000) Histone deacetylases, transcriptional control, and cancer. J. Cell. Physiol. 184, 1-16. https://doi.org/10.1002/(SICI)1097-4652(200007)184:1<1::AID-JCP1>3.0.CO;2-7
  12. Davie, J. R. (l998) Covalent modifications of histones: expression from chromatin templates. Curr. Opin. Genet. Dev. 8, 173-178. https://doi.org/10.1016/S0959-437X(98)80138-X
  13. Deroanne, C. F., Bonjean, K, Servotte, S., Devy, L., Colige, A., Clausse, N., Blacher, S., Verdin, E., Foidart, J. M., Nusgens, B. V., and Castronovo, V. (2002) Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 21, 427-436. https://doi.org/10.1038/sj.onc.1205108
  14. Dhordain, P., Lin, R. J., Quief, S., Lantoine, D., Kerckaert, J. P., Evans, R. M., and Albagli, O. (1998) The LAZ3 (BCL06) oncoprotein recruits a SMRT/Msin3A/histone deacetylase containing complex to mediate transcriptional repression. Nucleic Acids Res. 26, 4645-4651. https://doi.org/10.1093/nar/26.20.4645
  15. Finnin, M. S .. Donigian, J. R., Cohen, A., Richon, V. M., Rifkind, R. A., Marks, P. A., and Pavletich, N. P. (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401, 188-193. https://doi.org/10.1038/43710
  16. Folkman, J. (1996) Fighting cancer by attacking its blood supply. Sci. Am. 275, 150-154. https://doi.org/10.1038/scientificamerican0996-150
  17. Furumai, R., Matsuyama, A., Koba,hi, N., Lee, K. H., Nishiyama, M., Nakajima, H., Tanaka. A., Komatsu, Y., Nishino, N., Yoshida, M., and Horinouchi, S. (2002) FK228(depsipeptide) as a natural prodrug that inhibits class I histone deacetylase. Cancer Res. 62, 4916-4921.
  18. Galasinski, S. C., Resing, K. A, Goodrich, J. A., and Ahn, N. G. (2002) Phosphatase inhibition leads to histone deacetylase 1 and 2 phosphorylation and disruption of co-repressor interaction. J. BioI. Chem. 277. 19618-19626. https://doi.org/10.1074/jbc.M201174200
  19. Glick, R. D., Swendeman, S. L., Coffey, D. C., Ridkind, R. A., Marks, P. A., and Richon, V. M. (1999) Hybrid polar histone deacetylase inhibitor induces apoptosis and CD95/CD95 ligand expression in human neuroblastoma. Cancer Res. 59, 4392-4399.
  20. Grozinger, C. M., Hassig, C. A, and Schreiber, S. L. (1999) Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc. Natl. Acad. Sci. USA 96, 4868- 4873. https://doi.org/10.1073/pnas.96.9.4868
  21. Grozinger, C. M., and Schreiber, S. L. (2000) Regulation of histone deacetylases 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc. Natl. Acad. Sci. USA 97, 7835-7840. https://doi.org/10.1073/pnas.140199597
  22. Gu, W., and Roeder, R. G. (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595-606. https://doi.org/10.1016/S0092-8674(00)80521-8
  23. Guschin, D., Wade, P. A., Kikyo, N., and Wolffe, A. P. (2000) ATP-dependent histone octamer mobilization and histone deacetylation mediated by the Mi-2 chromatin remodeling complex. Biochemistry 39, 5238-5245. https://doi.org/10.1021/bi000421t
  24. Hassig, C. A, Fleischer, T. C., Billin, A. N., Schreiber, S. L., and Ayer, D. E. (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89, 341-347. https://doi.org/10.1016/S0092-8674(00)80214-7
  25. Heizel, T., Lavinsky, R. M., Mullen, T., Soderstrome, M., Laherty, C. D., Torchia, J., Yang, W., Brard, G., Ngo, S. D., Davie, J. R., Seto, E., Eisenman, R. N., Rose, D. W., Glass, C. K., and Rosenfeld, M. G. (1997) A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387, 43-48. https://doi.org/10.1038/387043a0
  26. Hoshikawa, Y., Kwon, H. J., Yoshida, M., Horinouchi, S., and Beppu, T. ( 1994) Trichostatin A induces morphological changes and gelsolin expression by inhibiting histone deacetylase in human carcinoma cell lines. Exp. Cell Res. 214, 189-197. https://doi.org/10.1006/excr.1994.1248
  27. Huang, E. Y., Zhang, J., Miska, E. A., Guenther. M. G., Kouzarides, T., and Lazar, M. A. (2000) Nuclear receptor co-repressor partner with class II histone deacetylases in a Sin3- independent repression pathway. Genes Dev. 14, 45-54.
  28. Hubbert, C.. Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X. F., Yao, T. P. (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417, 455-458. https://doi.org/10.1038/417455a
  29. Hwang, H. S., Suh, N. Y and Song, K. W. (2000) The fission yeast Hda 1p functions on the regulation of proper cell division. J. Biochem. Mol. Biol. 33, 263-267.
  30. Imfor, A., Yang, X. J., Ogryzko, V. V., Nakatani, Y., Wolffe, A. P., and Ge, H. (1997) Acetylation of general transcription factors by histone acetyltransferase. Curr. BioI. 7, 689-692. https://doi.org/10.1016/S0960-9822(06)00296-X
  31. Kadosh, D., and Struhl, K. (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 co-repressor and Rpd3 histone deacetylase to target promoters. Cell 89, 365-371. https://doi.org/10.1016/S0092-8674(00)80217-2
  32. Khochbin, S., and Kao, H. (2001) Histone deacetylase complexes: functional entities or molecular reservoirs. FEBS Lett. 494, 141-144. https://doi.org/10.1016/S0014-5793(01)02327-4
  33. Kijima, M., Yoshida, M., Sugita, K., Horinouchi, S., and Beppu, T. (1993) Trapoxin. an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J. Biol. Chem. 268, 22429-22435.
  34. Kim, M. S., Kwon, H. J., Lee, Y. M., Baec, J. H., Jang, J. E., Lee, S. W., Moon, E. J., Kim, H. S., Lee, S. K, Chung, H. Y, Kim, C. W., and Kim, G. W. (2001) Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nature Med. 7,437-443. https://doi.org/10.1038/86507
  35. Kornberg, R. D. (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184, 868-871. https://doi.org/10.1126/science.184.4139.868
  36. Kornberg, R. D., and Lorch, Y., (1999) Twenty-five years of the Nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285-294. https://doi.org/10.1016/S0092-8674(00)81958-3
  37. Kouzarides, T. (1999) Histone acetylase and deacetylase in cell proliferation. Curr. Opin. Genet. Dev. 9, 40-48. https://doi.org/10.1016/S0959-437X(99)80006-9
  38. Kwon, H. J., Kim, M. S., Kim, M. J., Nakajiam, H., and Kim. K. W. (2002) Histone deacetylase inhibitor FK228 inhibits tumor angiogenesis. Int. J. Cancer 97, 290-296. https://doi.org/10.1002/ijc.1602
  39. Kwon, H. J., Kim, M. J., and Kim, S. Y. (2002) New Yeast Cell- Based Assay System for Screening of Histone Deacetylasel Complex Disruptor. J. Microbial. Biotech. 12, 286-291.
  40. Kwon, H. J., Owa, T., Hassig, C. A., Shimada, J., and Schreiber, S. L. (1998) Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. Proc. Natl. Acad. Sci. USA 95, 3356-3361. https://doi.org/10.1073/pnas.95.7.3356
  41. Laherty, C. D., Yang, W., Sun, J., Davie, J. R, Seto, E., and Eisenman, R. N. (1997) Histone deacetylases associated with the mSin3 co-repressor mediate Mad transcriptional repression. Cell 89, 349-356. https://doi.org/10.1016/S0092-8674(00)80215-9
  42. Lander, J., Sutton, A., Tafrov, S. T., Heller. R C., Stebbin, J., Pillus, L., and Sternglanz, R. (2000) The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. USA 97, 5807-5811. https://doi.org/10.1073/pnas.110148297
  43. Lemercier, C., Verdel, A., Galloo, B., Curtet, S., Brocard, M., and Khochbin, S. (2000) mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J. Biol. Chem. 275, 15594-15599. https://doi.org/10.1074/jbc.M908437199
  44. Lim, Y., Han, I., Kwon, H. J., and Oh, E. S. (2002) Trichostatin A-induced detransformation correlates with decreased focal adhesion kinase phosphorylation at tyrosine 861 in ras-transformed fibroblasts. J. Biol. Chem. 277, 12735-12740. https://doi.org/10.1074/jbc.M111011200
  45. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997) Crystal structure of the Nucleosome core particle at 2.8A resolution. Nature 389, 251-260. https://doi.org/10.1038/38444
  46. Luo, R W., Postigo, A. A., and Dean, D. C. (1998) Rb interacts with histone deacetylase to repress transcription. Cell 92, 463- 473. https://doi.org/10.1016/S0092-8674(00)80940-X
  47. Mahoney, M. G., Simpson, A., Jost, M., Noe, M., Kari, C., Pepe, D., Choi, Y. W., Uitto, J., and Rodeck, U. (2002) Metastasis-associated protein 1 (MTA1) enhances migration, invasion, and anchorage-independent survival of immortalized human keratinocytes. Oncogene 21, 2161-2170. https://doi.org/10.1038/sj.onc.1205277
  48. Marks, P. A., and Rifkind, R. A. (1978) Erythroleukemic differentiation. Annu. Rev. Biochem. 47, 419-448. https://doi.org/10.1146/annurev.bi.47.070178.002223
  49. Marks, P. A., Rifkind, R. A., Richon, V. M., Breslow, R, Miller, T., and Kelly, W. K. (2001) Histone deacetylase and cancer: causes and therapies. Nature Rev. Cancer 1, 194-202. https://doi.org/10.1038/35106079
  50. Martinez-Balbas, M., Bauere, U. M., Nielsen, S. J., Brehm, A., and Kouzarides, T. (2000) Regulation of E2F activity by acetylation. EMBO J. 19,662-671. https://doi.org/10.1093/emboj/19.4.662
  51. Marzio, G., Wagenre, C., Gutierrez, M. I., Cartwright, P., Helin, K., and Giacca, M. (2000) E2F family members are differentially regulated by reverse acetylation. J. Biol. Chem. 275, 10887-10892. https://doi.org/10.1074/jbc.275.15.10887
  52. Mazumdar, A., Wang, R., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandai, M., Vadlamudi, R. K, and Kumar, R., (2001) Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 co-repressor. Nature Cell BioI. 3, 30-37. https://doi.org/10.1038/35050532
  53. Mizzen, C. A., Yang, X. J., Kokubo, T., Brownell, J. E., Bannister, A. J., and Owen-Hughes, T. (1996) The TAF (II) 250 subunit of TF(II)D has histone acetyltransferase activity. Cell 87, 1261-1270. https://doi.org/10.1016/S0092-8674(00)81821-8
  54. Munshi, N., Merika, M., Yie, J., Senger, K., Chen. G., and Thanos, D. (1998) Acetylation of HMG1 (Y) by CBP turns off IFNB expression by disrupting the enhanceosome. Mol. Cell 2, 457-467.
  55. Nagy, L., Kao, H., Chakravarti, D., Lin, R., Hassg, C. A., Ayer, D. E., Schreiber, S. L., and Evans, R. M. (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A and histone deacetylase. Cell 89, 373-380. https://doi.org/10.1016/S0092-8674(00)80218-4
  56. Nan, X, Ng, H., Johnson, C. A., Laherty, C. D., Turner, B. M., Eisenman, R. N. and Bird, A. (1998) Transcriptional repression by the methl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386-389. https://doi.org/10.1038/30764
  57. Newmark, H. L., Lupton, J. R. and Young, C. W. (1994) Butyrate as a differentiating agent; pharmacokinetics, analogues and current status. Cancer Lett. 78, 1-5. https://doi.org/10.1016/0304-3835(94)90023-X
  58. Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H. and Nakatino, Y. (1996) The transcriptional co-activators p300 and CBP are histone acetyltransferase. Cell 87, 953-959. https://doi.org/10.1016/S0092-8674(00)82001-2
  59. Pandolfi, P. P. (2001) Transcription therapy for cancer. Oncogene 20, 3116-3127. https://doi.org/10.1038/sj.onc.1204299
  60. Pflum, M. K, Tong, J. K. Lane, W. S., and Schreiber, S. L. (2001) Histone deacetylase 1 phosphorylation promotes enzymatic activity and complex formation. J. Biol. Chem. 276, 47733-47741. https://doi.org/10.1074/jbc.M105590200
  61. Petrij, F., Giles, R. H., Dauwerse, H. G., Saris, J. J., Hennekam, R C., Masuno, M., Tommerup, N., van Ommen, G. J., Goodman, R. H., and Peters, D. J. (1995) Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376, 348-351. https://doi.org/10.1038/376348a0
  62. Prakash, S., Foster. B. J., Meyer, M., Wozniak, A, Heibrum, L. K, Flaherty, L., Zalupski, M., Radulovic, L., Valdivieso, M., and LoRusso. P. M. (2001) Chronic oral administration of CI-994: a Phase I study. Investg. New Drugs 19, 1-11. https://doi.org/10.1023/A:1006489328324
  63. Qui, L., Kelso, M. J., Hansen, C., West, M. L., Fairlie, D. P., and Parsons, P. G. (1999) Anti-tumor activity in vitro and in vivo of selective differentiating agnets containing hydroxamate. Br. J. Cancer 80, 1252.1258. https://doi.org/10.1038/sj.bjc.6690493
  64. Richon. V. M., Emiliani, S., Verdin, E., Webb, Y, Breslow, R, and Rifkind, R. A. (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylase. Proc. Natl. Acad. Sci. USA 95, 3003-3007. https://doi.org/10.1073/pnas.95.6.3003
  65. Saito, A., Yamashita, T., Mariko, Y., Nosaka, Y., Tsuchiya, K., and Ando. T. (1999) A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc. Natl. Acad. Sci. USA 96, 4592-4597. https://doi.org/10.1073/pnas.96.8.4592
  66. Spencer, T. E., Jenster. G., Burcin, M. M., Allis, C. D., Zhou, J., and Mizzen, C. A. (1997) Steroid receptor co-activator-1 is a histone acetyltransferase. Nature 389, 194-198. https://doi.org/10.1038/38304
  67. Sterner, R., Vidali, G., and All frey, V. G. (1979) Studies of acetylation and deacetylation in high mobility group proteins. Identification of the sites of acetylation in HMG-1. J. BioI. Chem. 254. 11577-11583.
  68. Sternson. S. M., Wong, J. C., Grozinger, C. M., and Schreiber, S. L. (2001) Synthesis of 7200 small molecules based on a substructural analysis of the histone deacetylase inhibitors trichostatin and trapoxin. Org. Lett. 3, 4239-4242. https://doi.org/10.1021/ol016915f
  69. Struhl, K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599-606. https://doi.org/10.1101/gad.12.5.599
  70. Sugita, K., Yoshida, H., Matsumoto, M., and Matsutani, S. (1992) A novel compound. depudecin, induces production of transformation to the flat phenotype of NIH3T3 cells transformed by ras-oncogene. Biochem. Biophys. Res. Commun. 182, 379-387. https://doi.org/10.1016/S0006-291X(05)80156-1
  71. Takemura, R., Okabe, S., Vmeyama, T., Kanai, Y., Cowan, N. J., and Hirokawa, N. (1992) Increased microtubule stability and a-tubulin acetylation in cells transfected with microtubule-associated proteins MAP1B, MAP2 or tau. J. Cell Sci. 103, 953-964.
  72. Taunton, J., Hassig, C. A., and Schreiber, S. L. (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408-411. https://doi.org/10.1126/science.272.5260.408
  73. Toh, Y., Pencil, S. D., and Nicolson, G. L., (1998) A novel candidate metastasis-associated gene, mta1. differentially expressed in highly metastatic mammary adenocarcinoma cell lines. J. BioI. Chem. 269, 22958-22963.
  74. Tong, J. K., Hassig, C. A., Schnitzler, G. R., Kingston, R. E., and Schreiber, S. L. (1998) Chromatin deacetylation by an ATP-dependent nucleosome remodeling complex. Nature 395, 917-921. https://doi.org/10.1038/27699
  75. Tsuji, N., Kobaysshi, M., Nagashima, K, Wakisaka, Y., and Koizumi, K. (1976) A new antifungal antibiotics, trichostatin. J. Antibiot. (Tokyo). 29, 1-6. https://doi.org/10.7164/antibiotics.29.1
  76. Ueda, H., Nakajima, H., Hori, Y., Goto, T., and Okuhara, M. (1994) Action of FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum no. 968, on Ha-ras transformed NIH3T3 cells. Biosci. Biotechnol. Biochem. 58, 1579-1583. https://doi.org/10.1271/bbb.58.1579
  77. Van Lint, C., Emiliani, S., and Verdin, E. (1996) The expression of a small fraction of cellular gene is changed in response to histone hyperacetylation. Gene Expr. 5, 245-254.
  78. Wittich, S., Scherf, H., Xie, C., Brosch, G., Loidl, P., Gerhauser, C., and Jung, M. (2002) Structure-activity relationships on phenylalanine-containing inhibitors of histone deacetylase: in vitro enzyme inhibition, induction of differentiation, and inhibition of proliferation in Friend leukemic cells. J. Med. Chem. 45, 3296-3309. https://doi.org/10.1021/jm0208119
  79. Yang, W., Inouye, C., Zeng, Y., Bearss, D., and Seto, E. (1996) Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc. Natl. Acad. Sci. USA 93, 12845-12850. https://doi.org/10.1073/pnas.93.23.12845
  80. Yoshida, M., Horinouchi, S., and Beppu, T. (1995) Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 17, 423-430. https://doi.org/10.1002/bies.950170510
  81. Yoshida, M., Kijima, M., Akita, M., and Beppu, T. (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265, 17174-17179.
  82. Zhang, W., and Bieker, J. J. (1998) Acetylation and modulation of erythroid Kruppel-like factor (EKLF) activity by interaction with histone acetyltransferase. Proc. Natl. Acad. Sci. USA 95, 9855-9860. https://doi.org/10.1073/pnas.95.17.9855
  83. Zhang. Y., Ng, H., Erdjument-Bromage, H., Tempst, P., Bird, A., and Reinberg, D. (1999) Analysis of the NuRD subunits reveals a histone deacetylases core complex and a connection with DNA methylation. Genes Dev. 13, 1924-1935. https://doi.org/10.1101/gad.13.15.1924

Cited by

  1. Hipertrofia cardiaca: eventos moleculares y celulares vol.59, pp.5, 2006, https://doi.org/10.1157/13087900
  2. HDACi phenylbutyrate increases bystander killing of HSV-tk transfected glioma cells vol.324, pp.1, 2004, https://doi.org/10.1016/j.bbrc.2004.09.016
  3. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity vol.1822, pp.5, 2012, https://doi.org/10.1016/j.bbadis.2011.11.002
  4. Epigenetic Regulation by Dietary Phytochemicals in Photocarcinogenesis vol.1, pp.1, 2015, https://doi.org/10.1007/s40495-015-0021-2
  5. Synergistic induction of apoptosis in breast cancer cells by cotreatment with butyrate and TNF-alpha, TRAIL, or anti-Fas agonist antibody involves enhancement of death receptors' signaling and requires P21waf1 vol.298, pp.2, 2004, https://doi.org/10.1016/j.yexcr.2004.04.038
  6. Investigating micronutrients and epigenetic mechanisms in relation to inflammatory bowel disease vol.690, pp.1-2, 2010, https://doi.org/10.1016/j.mrfmmm.2010.02.006
  7. Global histone profiling by LC–FTMS after inhibition and knockdown of deacetylases in human cells vol.877, pp.30, 2009, https://doi.org/10.1016/j.jchromb.2009.09.042
  8. Histone deacetylase inhibitor FK228 suppresses the Ras–MAP kinase signaling pathway by upregulating Rap1 and induces apoptosis in malignant melanoma 2005, https://doi.org/10.1038/sj.onc.1209072
  9. The ergot alkaloid gene cluster: Functional analyses and evolutionary aspects vol.70, pp.15-16, 2009, https://doi.org/10.1016/j.phytochem.2009.05.023
  10. BimEL-dependent apoptosis induced in peripheral blood lymphocytes withn-butyric acid is moderated by variation in expression of c-myc and p21(WAF1) vol.26, pp.4, 2008, https://doi.org/10.1002/cbf.1474
  11. Plasma and cerebrospinal fluid pharmacokinetics of depsipeptide (FR901228) in nonhuman primates vol.54, pp.1, 2004, https://doi.org/10.1007/s00280-004-0766-5
  12. Cardiac Hypertrophy: Molecular and Cellular Events vol.59, pp.5, 2006, https://doi.org/10.1016/S1885-5857(06)60796-2
  13. Epstein-Barr Virus-infected Akata Cells Are Sensitive to Histone Deacetylase Inhibitor TSA-provoked Apoptosis vol.38, pp.6, 2005, https://doi.org/10.5483/BMBRep.2005.38.6.755
  14. Type-specific roles of histone deacetylase (HDAC) overexpression in ovarian carcinoma: HDAC1 enhances cell proliferation and HDAC3 stimulates cell migration with downregulation of E-cadherin vol.127, pp.6, 2010, https://doi.org/10.1002/ijc.25151
  15. In silico modification of suberoylanilide hydroxamic acid (SAHA) as potential inhibitor for class II histone deacetylase (HDAC) vol.12, pp.Suppl 13, 2011, https://doi.org/10.1186/1471-2105-12-S13-S23
  16. Effect of histone deacetylase inhibitor sodium butyrate on viability and life span in Drosophila melanogaster vol.3, pp.1, 2013, https://doi.org/10.1134/S2079057013010153
  17. Chromatin-remodelling mechanisms in cancer vol.658, pp.3, 2008, https://doi.org/10.1016/j.mrrev.2008.01.008
  18. Repetitive Treatments of Colon HT-29 Cells with Diallyl Disulfide Induce a Prolonged Hyperacetylation of Histone H3 K14 vol.1030, pp.1, 2004, https://doi.org/10.1196/annals.1329.071
  19. Characterisation of the GRAF gene promoter and its methylation in patients with acute myeloid leukaemia and myelodysplastic syndrome vol.94, pp.2, 2006, https://doi.org/10.1038/sj.bjc.6602939
  20. MicroRNA Dysregulation in Colon Cancer Microenvironment Interactions: The Importance of Small Things in Metastases vol.4, pp.2, 2011, https://doi.org/10.1007/s12307-011-0062-y
  21. SAHA Inhibits the Growth of Colon Tumors by Decreasing Histone Deacetylase and the Expression of Cyclin D1 and Survivin vol.18, pp.3, 2012, https://doi.org/10.1007/s12253-012-9499-7
  22. Epigenetic regulation of cell signaling pathways in acute lymphoblastic leukemia vol.5, pp.5, 2013, https://doi.org/10.2217/epi.13.56
  23. Selective transcription and cellular proliferation induced by PDGF require histone deacetylase activity vol.343, pp.2, 2006, https://doi.org/10.1016/j.bbrc.2006.03.013
  24. Histone deacetylase inhibitors, anticancerous mechanism and therapy for gastrointestinal cancers vol.20, pp.7, 2005, https://doi.org/10.1111/j.1440-1746.2005.03807.x
  25. Stage-specific antileishmanial activity of an inhibitor of SIR2 histone deacetylase vol.94, pp.2, 2005, https://doi.org/10.1016/j.actatropica.2005.03.004
  26. Synthesis of ω-Oxo Amino Acids andtrans-5-Substituted Proline Derivatives Using Cross-Metathesis of Unsaturated Amino Acids vol.81, pp.18, 2016, https://doi.org/10.1021/acs.joc.6b01571
  27. Effect of Broccoli Intake on Markers Related to Oxidative Stress and Cancer Risk in Healthy Smokers and Nonsmokers vol.61, pp.2, 2009, https://doi.org/10.1080/01635580802425688
  28. Metabolism as a key to histone deacetylase inhibition vol.46, pp.3, 2011, https://doi.org/10.3109/10409238.2011.557713
  29. Connectedness of PPI network neighborhoods identifies regulatory hub proteins vol.27, pp.8, 2011, https://doi.org/10.1093/bioinformatics/btr099
  30. Epigenetic Alterations in Ultraviolet Radiation-Induced Skin Carcinogenesis: Interaction of Bioactive Dietary Components on Epigenetic Targets† vol.88, pp.5, 2012, https://doi.org/10.1111/j.1751-1097.2011.01020.x
  31. Regulation at multiple levels of NF-κB-mediated transactivation by protein acetylation vol.68, pp.6, 2004, https://doi.org/10.1016/j.bcp.2004.05.039
  32. APE1/Ref-1 regulates PTEN expression mediated by Egr-1 vol.42, pp.1, 2008, https://doi.org/10.1080/10715760701765616
  33. Novel histone deacetylase inhibitor exhibits antitumor activity via apoptosis induction in oral squamous cell carcinoma vol.02, pp.03, 2011, https://doi.org/10.4236/jbpc.2011.23026
  34. The Role of Small Molecule Inhibitors for Veterinary Patients vol.37, pp.6, 2007, https://doi.org/10.1016/j.cvsm.2007.06.003
  35. Histone deacetylases are critical targets of bortezomib-induced cytotoxicity in multiple myeloma vol.116, pp.3, 2010, https://doi.org/10.1182/blood-2009-07-235663
  36. research paper: Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia vol.150, pp.6, 2010, https://doi.org/10.1111/j.1365-2141.2010.08301.x
  37. Sulforaphane (SFN): An Isothiocyanate in a Cancer Chemoprevention Paradigm vol.2, pp.3, 2015, https://doi.org/10.3390/medicines2030141
  38. Antitumor effects of histone deacetylase inhibitor on Ewing's family tumors vol.116, pp.5, 2005, https://doi.org/10.1002/ijc.21069
  39. Epigenetic targets of bioactive dietary components for cancer prevention and therapy vol.1, pp.3-4, 2010, https://doi.org/10.1007/s13148-010-0011-5
  40. Plasma and cerebrospinal fluid pharmacokinetics of the histone deacetylase inhibitor, belinostat (PXD101), in non-human primates vol.62, pp.3, 2008, https://doi.org/10.1007/s00280-007-0622-5
  41. Impact of histone deacetylase inhibitors SAHA and MS-275 on DNA repair pathways in human mesenchymal stem cells vol.225, pp.2, 2010, https://doi.org/10.1002/jcp.22236
  42. Processing of DNA double strand breaks by alternative non-homologous end-joining in hyperacetylated chromatin vol.3, pp.1, 2012, https://doi.org/10.1186/2041-9414-3-4
  43. Chemical regulation of epigenetic modifications: Opportunities for new cancer therapy vol.28, pp.5, 2008, https://doi.org/10.1002/med.20120
  44. Comparative application of antibody and gene array for expression profiling in human squamous cell lung carcinoma vol.49, pp.2, 2005, https://doi.org/10.1016/j.lungcan.2005.02.006
  45. A randomized phase II study of two doses of vorinostat in combination with 5-FU/LV in patients with refractory colorectal cancer vol.69, pp.3, 2012, https://doi.org/10.1007/s00280-011-1762-1
  46. T Cell Tolerance Induced by Histone Deacetylase Inhibitor is Mediated by P21cip1 vol.27, pp.4, 2005, https://doi.org/10.1080/08923970500416749
  47. Synthesis of a novel series of benzylether-containing cinnamoyl derivatives as histone deacetylase inhibitors vol.25, pp.1, 2010, https://doi.org/10.3109/14756360903049034
  48. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors vol.101, pp.52, 2004, https://doi.org/10.1073/pnas.0408345102
  49. Overexpression of HDAC9 promotes oral squamous cell carcinoma growth, regulates cell cycle progression, and inhibits apoptosis vol.415, pp.1-2, 2016, https://doi.org/10.1007/s11010-016-2690-5
  50. Apoptosis induction by sulfur-containing compounds in malignant and nonmalignant human cells vol.50, pp.3, 2009, https://doi.org/10.1002/em.20447
  51. Green tea polyphenols causes cell cycle arrest and apoptosis in prostate cancer cells by suppressing class I histone deacetylases vol.33, pp.2, 2012, https://doi.org/10.1093/carcin/bgr277
  52. Differential Effects of Histone Deacetylase Inhibitors in Tumor and Normal Cells—What Is the Toxicological Relevance? vol.35, pp.4, 2005, https://doi.org/10.1080/10408440590935639
  53. The Therapeutic Potential of Class I Selective Histone Deacetylase Inhibitors in Ovarian Cancer vol.4, 2014, https://doi.org/10.3389/fonc.2014.00111