DOI QR코드

DOI QR Code

Dietary Regulations of the Intestinal Barrier Function at Weaning

  • Bosi, Paolo (Degree of Animal Production Science and Technology, University of Bologna) ;
  • Gremokolini, Cyrien (Degree of Animal Production Science and Technology, University of Bologna) ;
  • Trevisi, Paolo (Degree of Animal Production Science and Technology, University of Bologna)
  • Published : 2003.04.01

Abstract

Weaning is a complex phase when the mammal suffers the action of different stressors that contribute to negatively affect the efficiency of the intestinal mucosa and of the whole local integrated system, that acts as barrier against any nocuous agent. The components of this barrier are mechanical, chemical, and bacteriological; immunological and not. The development of contact with a saprophyte microflora and the maintenance of feed intake after the interruption of motherly nutrition are essential for the maturation of an equilibrated local immune function and for a functional integrity of villi. Opportunities and limits of some dietary strategies that can contribute to reduce negative effects of weaning on health and performance are discussed. Knowledges on the possible mechanism of action of probiotics are upgraded, particularly for their supposed role in the balance between different immune functions (effectory/regulatory). Some tools to control pathogen microflora are reviewed (acids, herbs, immunoglobulin sources) and practical feeding systems are proposed.

Keywords

References

  1. Audia, J. P., C. C. Webb and J. W. Foster. 2001. Breaking through the acid barrier: An orchestrated response to proton stress by enteric bacteria. Int. J. Med. Microb. 291: 97-106. https://doi.org/10.1078/1438-4221-00106
  2. Bailey, M., F. J. Plunkett, H. J. Rothkotter, M. A. Vega-Lopez, K. Haverson and C. R. Stokes. 2001. Regulation of mucosal immune responses in effector sites. Proceedings of the Nutrition Society, Vol 60: 427-435. https://doi.org/10.1079/PNS2001118
  3. Bolduan, G., H. Jung , E. Schnabel and R. Scheider. 1988. Recent advances in the nutrition of weaner. Pig News Inf. 9:381-385.
  4. Bomba, A., R. Nemcova, S. Gancarcikova, R. Herich and R. Kastel. 1999. Potentiation of the effectiveness of Lactobacillus casei in the prevention of E. coli induced diarrhea in conventional and gnotobiotic pigs. Adv. Exp. Med. Biol. 473: 185-90
  5. Bosi, P., H. J. Jung, In K. Han, S. Perini, J. A. Cacciavillani, L. Casini, D. Creston, C. Gremokolini and S. Mattuzzi. 1999. Effects of dietary buffering characteristics and protected or unprotected acid on piglet growth, digestibility and characteristics of gut content. Asian-Aust. J. Anim. Sci. 12: 1104-1110. https://doi.org/10.5713/ajas.1999.1104
  6. Bosi, P. 2000. Modulation of immune response and barrier function in the piglet gut by dietary means. Asian-Aust. J. Anim. Sci. 13 (Special issue): 278-293.
  7. Bosi, P., In K. Han, H. J. Jung, K. N. Heo, S. Perini, A. M. Castellazzi, L. Casini, D. Creston and C. Gremokolini. 2001. Effect of different spray dried plasmas on growth, ileal digestibility, nutrient deposition, immunity and health of early weaned pigs challenged with E. coli K88. Asian-Aust. J. Anim. Sci. 14: 1138-1143. https://doi.org/10.5713/ajas.2001.1138
  8. Bosi P., S. Perini, L. Casini, C. Gremokolini and F. Piattoni. 2001. Effect of dietary zinc and immune response of piglets orally challenged with E. coli K88. . In: Recent Progress in Animal Science.2. Dipartimento di Scienze Zootecniche – Universit$\`{a}$ di Firenze. Firenze. pag. 335-337.
  9. Canibe, N., S. H. Steien, M. Overland and B. B. Jensen. 2001. Effect of K-diformate in starter diets on acidity, microbiota, and the amount of organic acids in the digestive tract of piglets, and on gastric alterations. J. Anim. Sci. 79: 2123-2133. https://doi.org/10.2527/2001.7982123x
  10. Carlson, M. S., S. L. Hoover, G. M. Hill, J. E. Link and J. R. Turk. 1998. Effect of pharmacological zinc on intestinal metallothionein concentration and morphology in nursery pig. J. Anim. Sci. 76 (Suppl. 2): 53 (Abstr.).
  11. Chandler, D. S., T. L. Mynott, J. R. K. Luke and J. A. Craven. 1994. The distribution and stability of Escherichia coli K88 receptor in the gastrointestinal tract of the pig. Vet. Microbiol. 38:203-215. https://doi.org/10.1016/0378-1135(94)90002-7
  12. Chen, H.Y., J. L. Austin and P. S. Miller. 1999. Zinc oxide, with or without carbadox, stimulates performance in nursery pigs. University of Nebraska 1999 Nebraska Swine Report, pp. 99-219.
  13. Christensen, H. R., H. Froki$\ae$r and J. J. Pestka. 2002. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immun. 168:171-178. https://doi.org/10.4049/jimmunol.168.1.171
  14. Coffey, R. D. and G. L. Cromwell. 2001. Use of spray-dried animal plasma in diets for weanling pigs. Pig News Inf. 22: 39N-47N.
  15. Cukrowska, B., H. Kozakova, Z. Rehakova, J. Sinkora and H. Tlaskalova-Hogenova. 2001. Specific antibody and immunoglobulin responses after intestinal colonization of germ-free piglets with non-pathogenic Escherichia coli O86. Immunobiology. 204:425-433 https://doi.org/10.1078/0171-2985-00052
  16. Du Toit, M., C. M. A. P. Franz, L. M. T. Dicks and W. H. Holzapfel. 2000. Preliminary characterisation of bacteriocins produced by Enterococcus faecium and Enterococcus faecalis isolated from pig faeces. J. Appl. Microb. 88:482-494. https://doi.org/10.1046/j.1365-2672.2000.00986.x
  17. Erhard, M. H., K. Leuzinger and M. Stangassinger. 2000. Studies on the prophylactic effect of feeding probiotics, pathogenspecific colostrum antibodies or egg yolk antibodies in newborn calves. J. Anim. Physiol. Anim. Nutr. 84: 85-94. https://doi.org/10.1046/j.1439-0396.2000.00284.x
  18. Faure, G. C., M. Morisset, B. Gobert, C. Guerin, C. Pedone, C. Bouley and M. C. Bene. 2001. Specific IgA to lactic acid bacteria in feces of children consuming milk fermented by yoghurt symbiosis and Lactobacillus casei (Danone strain DN 114 001). Adv. Exp. Med. Biol. 501: 385-389
  19. Fedorka-Cray. P. J., J. S. Bailey, N. J. Stern, N.A. Cox, S. R. Ladely and M. Musgrove. 1999. Mucosal competitive exclusion to reduce Salmonella in swine. J. Food Prot. 62(12): 1376-1380 https://doi.org/10.4315/0362-028X-62.12.1376
  20. Genovese, K. J., R. C. Anderson, R. B. Harvey and D. J. Nisbet. 2000. Competitive exclusion treatment reduces the mortality and fecal shedding associated with enterotoxigenic Escherichia coli infection in nursery-raised neonatal pigs. Can. J. Vet. Res. 64(4): 204-207
  21. Guilfoyle, D.E. and I. N. Hirshfield. 1996. The survival benefit of short-chain organic acids and the inducible arginine and lysine decarboxylase genes for Escherichia coli. Lett. Appl. Microb. 22: 393-396. https://doi.org/10.1111/j.1472-765X.1996.tb01187.x
  22. Hill, G. M., D. C. Mahan, S. D. Carter, G. L. Cromwell, R. C. Ewan, R. L. Harrold, A. J. Lewis, P. S. Miller, G. C. Shurson and T. L. Veum. 2001. Effect of pharmacological concentrations of zinc oxide with or without the inclusion of an antibacterial agent on nursery pig performance. J. Anim. Sci. 79(4): 934-941 https://doi.org/10.2527/2001.794934x
  23. Holden P. J. and McKean J. 2000a. Botanicals for Pigs - Echinacea II. Swine Res. Report, Iowa State University, Ames, ASLR647.
  24. Holden, P. J. and J. McKean. 2000b. Botanicals for Pigs - Garlic II. Swine Res. Report Ames, Iowa State University, Ames, ASLR648.
  25. Holden, P. J. and J. McKean. 2000c. Botanicals for Pigs. Iowa State University, Peppermint II. Swine Res. Report, Ames, ASL-R649.
  26. Huber, A. M. and S. N. Gershoff. 1973. Effects of dietary zinc on zinc enzymes in the rat. J. Nutr. 103:1175-1181.
  27. Hurst, D., I. J. Lean, and A. D. Hall. 2001. The effects of liquid feed on the small intestinal mucosa and performance of piglets at 28 days postweaning. Proceedings of the British Society of Animal Science. British Society of Animal Science, Midlothian, UK, 162.
  28. Imberechts, H., P. Deprez, E. VanDriessche and P. Pohl. 1997. Chicken egg yolk antibodies against F18ab fimbriae of Escherichia coli inhibit shedding of F18 positive E-coli by experimentally infected pigs. Vet. Microbiol. 54:329-341. https://doi.org/10.1016/S0378-1135(96)01293-X
  29. Jeyasingham, M. D., P. Butty, T. P. King, R. Begbie, and D. Kelly. 1999. Escherichia coli K88 receptor expression in intestine of disease-susceptible weaned pigs. Vet. Microbiol. 68: 219-234. https://doi.org/10.1016/S0378-1135(99)00052-8
  30. Jensen-Waern, M., L. Melin, R. Lindberg, A. Johannisson, L. Petersson and P. Wallgren. 1998. Dietary zinc oxide in weaned pigs - effects on performance, tissue concentrations, morphology, neutrophil functions and faecal microflora. Res. Vet. Sci. 64:225-231. https://doi.org/10.1016/S0034-5288(98)90130-8
  31. Jin, L. Z., S. K. Baidoo, R. R. Marquardt and A. A. Frohlich. 1998. In vitro inhibition of adhesion of enterotoxigenic Escherichia coli K88 to piglet intestinal mucus by egg-yolk antibodies. Immunol. Med. Microbiol. 21(4): 313-21 https://doi.org/10.1111/j.1574-695X.1998.tb01179.x
  32. Jin, L. Z., R. R. Marquardt and S. K. Baidoo. 2000a. Inhibition of enterotoxigenic Escherichia coli K88, K99 and 987P by the Lactobacillus isolates from porcine intestine. J. Sci. Food Agric. 80: 619-624. https://doi.org/10.1002/(SICI)1097-0010(200004)80:5<619::AID-JSFA583>3.0.CO;2-7
  33. Jin, L.Z., R. R. Marquardt and X. A. Zhao. 2000b. A strain of enterococcus faecium (18C23) inhibits adhesion of enterotoxigenicescherichia coli K88 to porcine small intestine mucus. Appl. Environ. Microbiol. 66: 4200-4204. https://doi.org/10.1128/AEM.66.10.4200-4204.2000
  34. Katouli, M., L. Melin, M. Jensen-Waern, P. Wallgren and R. Mollby. 1999. The effect of zinc oxide supplementation on the stability of the intestinal flora with special reference to composition of coliforms in weaned pigs. J. Appl. Microbiol. 87: 564-73. https://doi.org/10.1046/j.1365-2672.1999.00853.x
  35. Kemme-Kroonsberg, C. 1993. Nutrition and acid-base of pigs: a review. Research Institute for Livestock Feeding and Nutrition (IVVO-DLO), Lelystad (NL), rapport n.243.
  36. Kwon, Y. M. and S. C. Ricke. 1998. Induction of acid resistance of Salmonella typhimurium by exposure to short-chain fatty acids. Appl. Environ. Microb. 64: 3458-3463.
  37. Lanning, D., P. Sethupathi, K. J. Rhee, S. K. Zhai, and K. L. Knight. 2000. Intestinal Microflora and Diversification of the Rabbit Antibody Repertoire. J. Immunol. 165: 2012-2019. https://doi.org/10.4049/jimmunol.165.4.2012
  38. Leser, T. D., R. H. Lindecrona, T. K. Jensen, B. B. Jensen and K. Moller. 2000. Changes in bacterial community structure in the colon of pigs fed different experimental diets and after infection with Brachyspira hyodysenteriae. Appl. Environ. Microb. 66:3290-3296. https://doi.org/10.1128/AEM.66.8.3290-3296.2000
  39. Li, B. T., A. G. Van Kessel, W. R. Caine, S. X. Huang and R. N. Kirkwood. 2001. Small intestinal mprphology and bacterial populations in ileal digesta and feces of newly weaned pigs receiving a high dietary level of zinc oxide. Can. J. Anim. Sci. 81: 511-516. https://doi.org/10.4141/A01-043
  40. Maassen, C. B., C. Van Holten-Neelen, F. Balk, M. J. den Bak-Glashouwer, R. J. Leer, J. D. Laman, W. J. Boersma and E. Claassen. 2000. Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine 18: 2613-2623. https://doi.org/10.1016/S0264-410X(99)00378-3
  41. Mahan, D., C. S. D. Carter, G. C. Cromwell, G. M. Hill, R. L. Harrold, A. J. Lewis and T. L. Veum. 2000. Efficacy of added zinc oxide levels with or without an antibacterial agent in the postweaning diets of pigs. J. Anim. Sci. 78 (Suppl. 2): 61 (Abstr.).
  42. Marquardt, R. R., L. Z. Jin, J. W. Kim, L. Fang, A. A. Frohlich and S. K. Baidoo. 1999. Passive protective effect of egg-yolk antibodies against enterotoxigenic Escherichia coli K88+ infection in neonatal and early-weaned piglets. Immunol. Med. Microbiol. 23(4): 283-288. https://doi.org/10.1111/j.1574-695X.1999.tb01249.x
  43. Mavromichalis, I., C. M. Peter, T. M. Parr, D. Ganessunker and D. H. Baker. 2000. Growth-promoting efficacy in young pigs of two sources of zinc oxide having either a high or a low bioavailability of zinc. J. Anim. Sci. 78: 2896-2902. https://doi.org/10.2527/2000.78112896x
  44. Mavromichalis, I., D. M. Webel, E. N. Parr and D. H. Baker. 2001. Growth-promoting efficacy of pharmacological doses of tetrabasic zinc chloride in diets for nursery pigs. Can. J. Anim. Sci. 81:387-391. https://doi.org/10.4141/A01-005
  45. McCormick, B. A., S. P. Colgan, C. Delp-Archer, S. I. Miller and J. L. Madara. 1993. Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J. Cell. Biol. 123(4):895-907 https://doi.org/10.1083/jcb.123.4.895
  46. McCracken, V. J. and H. R. Gaskins. 1999. Probiotics and the immune system, 85-111 In G.W. Tannock (Ed.), Probiotics: a critical review. Horizon Scientific Press, Norfollk, UK.
  47. Miller, B. G., P. H. Jones, S. Rizvi, J. Gibson and D. Patel. 2001. Enzyme-linked immuno-absorbent assay (ELISA) to determine the effectiveness of anti-adhesive factors in blocking the binding of F4(K88)ac E. coli to pig intestine. Proceedings of the British Society of Animal Science. Midlothian, UK, 164.
  48. Mikkelsen, L. L. and B. B. Jensen. 1998. Performance and microbial activity in the gastrointestinal tract of piglets fed fermented liquid feed at weaning. J. Anim. Feed. Sci. 7: 211-215 (Suppl. 1).
  49. Mikkelsen, L. L. and B. B. Jensen. 2000. Effect of fermented liquid feed on the activity and composition of the microbiota in the gut of pigs. Nutr.Abstr. Rev. Series B, Liv. Feeds and Feeding. 70: 919-924.
  50. Mores, N., J. Cristani, I. A. Piffer, W. W. Barioni and G. M. M. Lima. 1998. Efeito de oxido de zinco no controle da diarr$\'{e}$ia p$\'{o}$s-desmane em leit$\~{o}$es infectados experimentalmente com Escherichia coli. Arq. Bras. Med. Vet. Zootec. 50: 513-523.
  51. Mosenthin, R. and E. Bauer. 2000. The potential use of prebiotics in pig nutrition. Asian-Aust. J. Anim. Sci. 13: 315-325.
  52. Neish, A. S., A. T. Gewirtz, H. Zeng, A. N. Young, M. E. Hobert, V. Karmali, A. S. Rao and J. L. Madara. 2000. Prokaryotic regulation of epithelial responses by inhibition of IkappaBalpha ubiquitination. Sci. 289: 1560-1563. https://doi.org/10.1126/science.289.5484.1560
  53. Odle, J. and R. J. Harrell. 1998. Nutritional approaches for improving neonatal piglet performance: is there a place for liquid diets in commercial production? Asian-Aust. J. Anim. Sci. 11: 774-780. https://doi.org/10.5713/ajas.1998.774
  54. Pabst, R. and H. J. Rothkotter. 1999. Postnatal development of lymphocyte subsets in different compartments of the small intestine of piglets. Vet. Immunol. Immunopathol. 72: 167-173. https://doi.org/10.1016/S0165-2427(99)00129-4
  55. Paik, K. I., H. S. Lim, S. W. Park, D. Y. Park and H. Namkung. 2000. Effect of chelated mineral supplementation on the performance of chickens and pigs. Meeting AAAP-ASAP 2000, AAAP, Seul, Corea and ASAP, Adelaide, Australia.
  56. Partanen, K. H. and Z. Mroz. 1999. Organic acids for performance enhancement in pig diets. Nutr. Res. Rev. 12: 117-145. https://doi.org/10.1079/095442299108728884
  57. Rescigno, M., M. Urbano, B. Valzasina, M. Francolini, G. Rotta, R. Bonasio, F. Granucci, J. P. Kraehenbuhl and P. Ricciardi-Castagnoli. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2(4): 361-367. https://doi.org/10.1038/86373
  58. Rizvi, S., D. A. Harbour, G. R. Pearson, D. Patel, C. R. Stokes and B. G. Miller. 2001. The use of hyper-immunised egg as a source of prophylactic antibodies in neonatal piglet. Proceedings of the British Society of Animal Science, Midlothian, UK, 23.
  59. Rothkotter, H. J., R. Pabst and M. Bailey. 1999. Lymphocyte migration in the intestinal mucosa: entry, transit and emigration of lymphoid cells and the influence of antigen. Vet. Immunol. Immunopathol. 72: 157-165. https://doi.org/10.1016/S0165-2427(99)00128-2
  60. Roberts, E. S., E. Van Heugten, G. Almond and J. W. Spears. 1999. Effect of dietary zinc on growth performance and immune response of endotoxemic growing pigs J. Anim. Sci. 77 (Suppl.1) 178 (Abstr.).
  61. Schell, T. C. and E. T. Kornegay. 1994. Effectiveness of zinc acetate injection in alleviating postweaning performance lag in pigs. J. Anim. Sci. 72: 3037-3042. https://doi.org/10.2527/1994.72123037x
  62. Schell, T. C. and E. T. Kornegay. 1996. Zinc concentration in tissues and performance of weanling pigs fed pharmacological levels of zinc from ZnO, Zn-methionine, Zn-lysine, or ZnSO4. J. Anim. Sci. 74: 1584-1593. https://doi.org/10.2527/1996.7471584x
  63. Shu, Q., F. Qu and H. S. Gill. 2001. Probiotic treatment using Bifidobacterium lactis HN019 reduces weanling diarrhea associated with rotavirus and Escherichia coli infection in a piglet model. J. Pediatr. Gastroenterol Nutr. 33: 171-177. https://doi.org/10.1097/00005176-200108000-00014
  64. Smith-Palmer, A., J. Stewart and L. Fyfe. 1998. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett. Appl. Microbiol., 26(2): 118-122. https://doi.org/10.1046/j.1472-765X.1998.00303.x
  65. Spencer, R. J. and A. Chesson. 1994. The effect of Lactobacillus spp. on the attachment of enterotoxigenic Escherichia coli to isolated porcine enterocytes. J. Appl. Bact. 77: 215-220. https://doi.org/10.1111/j.1365-2672.1994.tb03066.x
  66. Spreeuwenberg, M. A., J. M. Verdonk, H. R. Gaskins and M. W. Verstegen. 2001. Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning. J. Nutr. 131(5): 1520-1527.
  67. Stanger, B. R., G. M. Hill, J. E. Link, J. R. Turk, M. S. Carlson and D. W. Rozeboom. 1998. Effect of high zinc diets on TGEchallenged early weaned piglets. J. Anim. Sci. 78 (Suppl. 2) 52 (Abstr.).
  68. Tarnow, P., M. Agren, H. Steenfos and J. O. Jansson. 1994. Topical zinc oxide treatment increases endogenous gene expression of insulin-like growth factor-1 in granulation tissue from porcine wounds. Scand. J. Plast. Reconstr. Surg. Hand. Surg. 28: 255-259. https://doi.org/10.3109/02844319409022008
  69. Todesco, D. 2001. The potentiality of herbs and plant extracts as feed additives in livestock production. Zoot. Nutr. Anim. 27: 111-133.
  70. Van Dijk, A. J., H. Everts, M. J. A. Nabuurs , R. J. C. F. Margry and A. C. Beynen. 2001. Growth performance of weanling pigs fed spray-dried animal plasma: a review. Liv. Prod. Sci. 68: 263-274. https://doi.org/10.1016/S0301-6226(00)00229-3
  71. Van Winsen, R. L., B. A. P. Urlings, L. J. A.Lipman, J. M. Snijders, D. Keuzenkamp, J. H. Verheijden and F. Van Knapen. 2001. Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs. Appl. Environ. Microb. 67: 3071-3076. https://doi.org/10.1128/AEM.67.7.3071-3076.2001
  72. Vidal, V, J. Dewulf and G. M. Bahr. 2001. Enhanced maturation and functional capacity of monocyte-derived immature dendritic cells by the synthetic immunomodulator Murabutide. Immunology 103(4): 479-87. https://doi.org/10.1046/j.1365-2567.2001.01269.x
  73. Vignolini, F., F. Nobili and E. Mengheri. 1998. Involvement of interleukin-1beta in zinc deficiency-induced intestinal damage and beneficial effect of cyclosporine A. Life Sci. 6: 131-141.
  74. Von der Weid, T., C. Bulliard and E. J. Schiffrin. 2001. Induction by a lactic acid bacterium of a population of CD4(+) T cells with low proliferative capacity that produce transforming growth factor beta and interleukin-10. Clin. Diagn. Lab. Immunol. 8: 695-701.
  75. Woodworth, J. C., M. D. Tokach, J. L. Nelssen, R. D. Goodband, P. R. O. Quinn and T. M. Fakler. 1999a. The effcts of added zinc from zinc sulfate or zinc sulfate/zinc oxide combinations on weanling pig growth performance. J. Anim. Sci. 77 (Suppl. 2): 37 (Abstr.).
  76. Woodworth, J. C., M. D. Tokach, J. L. Nelssen, R. D. Goodband, P. R. O. Quinn and T. M. Fakler. 1999b. The effects of added zinc from an organic zinc complex or inorganic zinc sources on weanling pig growth performance. J. Anim. Sci. 77 (Suppl. 2) 37 (Abstr.).
  77. Yokoyama, H., R. C. Peralta, R. Diaz, S. Sendo, Y. Ikemori and Y. Kodama. 1992. Passive protective effect of chicken egg yolk immunoglobulins against experimental enterotoxigenic Escherichia coli infection in neonatal piglets. Infect Immun. Infect Immun. 60(3): 998-1007.
  78. Yokoyama, H., K. Umeda, R. C. Peralta, T. Hashi, F. C. Jr Icatlo, M. Kuroki, Y. Ikemori and Y. Kodama. 1998. Oral passive immunization against experimental salmonellosis in mice using chicken egg yolk antibodies specific for Salmonella enteritidis and S.typhimurium. Vaccine 16(4): 388-393. https://doi.org/10.1016/S0264-410X(97)80916-4
  79. Zhang, G., C. R. Ross and F. Blecha. 2000. Porcine antimicrobial peptides: new prospects for ancient molecules of host defense. Vet. Res. 31: 277-296. https://doi.org/10.1051/vetres:2000121
  80. Zuniga, A., H. Yokoyama, P. Albicker-Rippinger, E. Eggenberger and H. U. Bertschinger. 1997. Reduced intestinal colonisation with F18-positive enterotoxigenic Escherichia coli in weaned pigs fed chicken egg antibody against the fimbriae. Immunol. Med. Microbiol. 18(3): 153-161. https://doi.org/10.1016/S0928-8244(97)00035-7

Cited by

  1. Developmental gene expression of lactoferrin in duodenum and effect of weaning age on gene expression of lactoferrin in piglets vol.60, pp.1, 2006, https://doi.org/10.1080/17450390500468255
  2. Effect of lactoferrin on the growth performance, intestinal morphology, and expression of PR-39 and protegrin-1 genes in weaned piglets1 vol.84, pp.10, 2006, https://doi.org/10.2527/jas.2005-544
  3. Effect of dietary lactoferrin on the immune functions and serum iron level of weanling piglets1 vol.85, pp.9, 2007, https://doi.org/10.2527/jas.2006-754
  4. Potato (Solanum tuberosum L. cv. Gogu valley) protein as a novel antimicrobial agent in weanling pigs1 vol.86, pp.7, 2008, https://doi.org/10.2527/jas.2007-0414
  5. Effects of the lactoferrin (LF) on the growth performance, intestinal microflora and morphology of weanling pigs vol.135, pp.3, 2003, https://doi.org/10.1016/j.anifeedsci.2006.07.013
  6. CpG oligodeoxynucleotide promotes protective immunity in the enteric mucosa and suppresses enterotoxigenic E. coli in the weaning piglets vol.10, pp.10, 2003, https://doi.org/10.1016/j.intimp.2010.07.006
  7. Effect of Probiotics and Herbal Products on Intestinal Histomorphological and Immunological Development in Piglets vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/3461768
  8. Inclusion of Yerba Mate ( Ilex paraguariensis ) Extract in the Diet of Growing Lambs: Effects on Blood Parameters, Animal Performance, and Carcass Traits vol.10, pp.6, 2003, https://doi.org/10.3390/ani10060961