DOI QR코드

DOI QR Code

Imidazole Ring-Opened DNA Purines and Their Biological Significance

  • Barbara, Tudek (Institute of Biochemistry and Biophysics, Polish Academy of Sciences)
  • Published : 2003.01.31

Abstract

Fragmentation of purine imidazole ring and production of formamidopyrimidines in deoxynucleosides (Fapy lesions) occurs upon DNA oxidation as well as upon spontaneous or alkali-triggered rearrangement of certain alkylated bases. Many chemotherapeutic agents such as cyclophosphamide or thiotepa produce such lesions in DNA. Unsubstituted FapyA and FapyG, formed upon DNA oxidation cause moderate inhibition of DNA synthesis, which is DNA polymerase and sequence dependent. Fapy-7MeG, a methylated counterpart of FapyG-, a efficiently inhibits DNA replication in vitro and in E.coli, however its mutagenic potency is low. This is probably due to preferential incorporation of cytosine opposite Fapy-7MeG and preferential extension of Fapy-7MeG:C pair. In contrast, FapyA and Fapy-7MeA possess miscoding potential. Both lesions in SOS induced E.coli preferentially mispair with cytosine giving rise to A$\rightarrow$G transitions. Fapy lesions substituted with longer chain alkyl groups also show simult aneous lethal and mutagenic properties. Fapy lesions are actively eliminated from DNA by repair glycosylases specific for oxidized purines and pyrimidines both in bacteria and eukaryotic cells. Bacterial enzymes include E.coli formamidopyrimidine-DNA-glycosylase (Fpg protein), endonuclease III (Nth protein) and endonuclease VIII (Nei protein).

Keywords

References

  1. Aruoma, O. I., Halliwell, B. and Dizdaroglu. M. (1989) Iron iondependent modification of bases in DNA by the superoxide radical generating system hypoxanthine/ xanthine oxidase. J. Biol. Chem.264, 13024-13028.
  2. Asagoshi, K., Terato, H., Ohyama, Y. and Ide, H. (2002) Effects of a guanine-derived fonnamidopyrimidine lesion on DNA replication: translesion DNA synthesis, nucleotide insertion. and extension kinetics . J. Bioi. Chem. 277, 14589-14597. https://doi.org/10.1074/jbc.M200316200
  3. Berdllek, D. T., Weiss, C. C., Evans, F. E., Chetsanga, C. J. and Kadlubar, F. F. (1983) Identification of N5-methyl-N5-formyl- 2,5,6-triamino-4-hydroxypyrimidine as a major adduct in rat liver DNA after treatment with the carcinogens, N,N-dimethylnitrosamine or 1,2-dimethylhydrazine. Biochem. Biophys. Res. Commun. 110, 625-631. https://doi.org/10.1016/0006-291X(83)91195-6
  4. Boiteux, S. and Laval, J. (1983) Imidazole ring opening of 7- methylguanine: an inhibitor of DNA synthesis. Nucleic Acid Res. 110. 552-558.
  5. Boiteux, S., Belleney, J., Roques, B. P. and Laval, J. (1984) Two rotarneric forms of open ring 7-methylguanine are present in alkylated polynucleotides. Nucleic Acids Res. 12, 5429-5439. https://doi.org/10.1093/nar/12.13.5429
  6. Boiteux, S., OConnor, T. R. and Laval, J. (1987) Formarnidopyrimidine-DNA glycosylase of Escherichia coli: cloning and sequencing of t he fpg structural gene and overproducing of the protein. EMBO J. 6, 3177-3183.
  7. Boiteux, S., Bichara, M., Fuchs, R. P. P. and Laval, J. (1989) Excision of the imidazole ring-opened form of N-2- aminofluorene-C(8)-guanine adduct in poly(dG-dC) by Escherichia coli formamidopyrimidine-DNA glycosylase. Carcinogenesis 10, 1905-1909. https://doi.org/10.1093/carcin/10.10.1905
  8. Boiteux S, O'Connor T. R, Lederer F., Gouyette, A. and Laval, J. (1990) Homogeneous Escherichia coli FPG protein. A DNA glycosylase which excises imidazole ring-opened purines and nicks DNA at apurinic/apyrimidinic sites. J. Biol. Chem. 265, 3916-3922.
  9. Busby, W. F. Jr. and Wogan, G. N. (1984) in Chemical Carcinogens, Searle, C. (ed.), pp. 945-1136, American Chemical Society, Washington, DC.
  10. Cadet, J., Berger, M., Buchko,W, Joshi, P. K, Raoul, S. and Ravanat, J. L. (1994) 2,2-Diamine-4-[(3,5-di-O-acetyl-2- deoxybeta-D-erythropentofuranosyl)amino]-5-(2H) oxazoJone: A novel and predominat radical oxidation product of 3,5-di-O- acetyl-2 deoxyguanosine. J. Am. Chem. Soc. 116, 7403-7404. https://doi.org/10.1021/ja00095a052
  11. Cussac, C. and Laval, F. (1996) Reduction of the toxicity and mutagenicity of aziridine in mammalian cells harboring the Escherichia coli fpg gene. Nucleic Acids Res. 24, 1742-1746. https://doi.org/10.1093/nar/24.9.1742
  12. Dizdaroglu, M., Rao, G., Halliwell, B. and Gajewski, E. (1991) Damage to the bases in mammalian chromatin by hydrogen peroxide in the presence of ferric and cupric ions. Arch. Biochem. Biophys. 285, 317-324. https://doi.org/10.1016/0003-9861(91)90366-Q
  13. Dizdaroglu, M., Nackerdien, Z., Chao, B. C., Gajewski, E. and Rao, G. (1991) Chemical nature of in vivo DNA base damage in hydrogen peroxide-treated mammalian cells. Arch. Biochem. Biophys. 285, 388-390. https://doi.org/10.1016/0003-9861(91)90378-V
  14. Dizdaroglu, M. (1994) Chemical determination of oxidative DNA damage by gas chromatography-mass spectrometry. Methods Enzymol., 234, 3-16. https://doi.org/10.1016/0076-6879(94)34072-2
  15. Doetsch, P. W, Zastawny, T. H., Martin, A M. and Dizdaroglu, M. (1995) Monomeric base damage products from adenine, guanine and thymine induced by exposure of DNA to ultraviolet radiation. Biochemistry 34,737-742. https://doi.org/10.1021/bi00003a005
  16. Douki, T. (1996) Cadet, J.Peroxynitrite mediated oxidation of purine bases in nucleosides and DNA. Free Radic. Res. Commun. 24, 369-380. https://doi.org/10.3109/10715769609088035
  17. Fujita, S. and Steenken, S. (1981) Pattern of OH radical addition to uracil and methyl- and carbon substituted uracils: Electron transfer of OH adducts with N,N,N,N tertramethylphenylenediamine and tetranitromethane. J. Am. Chem. Soc. 103, 2540-2545. https://doi.org/10.1021/ja00400a009
  18. Garrett, E. R. and Mehta, P. J. (1972) Solvolysis of adenine nucleosides. II. Effects of sugars and adenine substituents on alakline solvolyses. J. Am. Chem. Soc. 94, 8542-8547. https://doi.org/10.1021/ja00779a041
  19. Gill, R.D., Cussac, C., Souhami, R. L. and Laval, F. (1996) Increased resistance to N,N',N"-triethylenethiophosphoramide (thiotepa) in cells expressing the Escherichia coli formamidopyrimidine-DNA glycosylase. Cancer Res. 15, 3721- 3724.
  20. Graziewicz, M.-A, Zastawny, T. H., Olinski, R. and Tudek, B. (1999) SOS-dependent A$\rightarrow$G transitions induced by hydroxyl radical generating system hypoxanthine/xanthine oxidase/$Fe^{+3}$/ EDTA are accompanied by the increase of Fapy-adenine content in M13mp18 phage DNA. Mutat. Res. 434, 41-52. https://doi.org/10.1016/S0921-8777(99)00012-9
  21. Graziewicz, M.-A., Zastawny, T. H., Olinski, T. H., Speina, E., Siedlecki, J. and Tudek, B., (2000) FapyAdenine is a moderately efficient chain terminator for prokaryotic DNA polymerases. Free Radic. Biol. Med. 28, 75-83. https://doi.org/10.1016/S0891-5849(99)00208-7
  22. Greenberg, M. M., Hantosi, Z., Wiederholt, C. J. and Rithner, C. D. (2001) Studies on N4-(2-Deoxy-D-pentofuranosyl)-4,6- diarnino-5-formarnidopyrimidine (Fapy-dA) and N6-(2-Deoxy- D-pentofuranosyl)-6-diarnino-5-formarnido-4-hydroxypyrimidine (Fapy-dG). Biochemistry 40, 15856-15861. https://doi.org/10.1021/bi011490q
  23. Haines, J. A, Reese, C. B. and Todd, J.L. (1962) The methylation of guanosine and related compounds with diazomethane. J. Chem. Soc. 5281-5288. https://doi.org/10.1039/jr9620005281
  24. Haraguchi, K, Delaney, M. O., Wiederholt, C. J., Sambandon, C. J., Hantoshi, Z. and Greenberg, M. M. (2002) Synthesis and characterisation of oligodeoxynucleotides contammg formamidopyrimidine lesions and nonhydrolyzable analogues. J. Am. Chem. Soc., 124, 3263-3269. https://doi.org/10.1021/ja012135q
  25. Hazra, T. K, Izumi, T., Maidt, L., Floyd, R. A. and Mitra, S. (1998) The presence of two distinct 8-oxoguanine repair enzymes in human cells: their potential complementary roles in preventing mutation. Nucleic Acids Res. 26,5116-5122. https://doi.org/10.1093/nar/26.22.5116
  26. Hemminki, K. (1984) Reaction of ethyleneimine with guanosine and deoxyguanosine. Chem.-Biol. Interact. 48, 249-260. https://doi.org/10.1016/0009-2797(84)90138-8
  27. Hemminki, K. and Kallama, S. (1986) Reactions of nitrogen mustards with DNA. IARC Sci. Publ. 55-70.
  28. Hsieh, D. P. and Atkinson, D.N. (1991) Bisfuranoid mycotoxins: their genotoxicity and carcinogenicity. Adv. Exp. Med. Biol. 283, 525-532. https://doi.org/10.1007/978-1-4684-5877-0_69
  29. Kadlubar, F. F., Beranek, D. T., Weiss, C. C., Evans, F. E., Cox, R. and Irving, C. C. (1984) Characterization of the purine ringopened 7-methylguanine and its persistence in rat bladder epithelial DNA after treatment with the carcinogen N- methylnitrosourea. Carcinogenesis 5, 587-592. https://doi.org/10.1093/carcin/5.5.587
  30. Karahalil, B, Girard, P. M., Boiteux, S. and Dizdaroglu, M. (1998) Substrate specificity of the Ogg1 protein of Saccharomyces cerevisiae: excision of guanine lesions produced in DNA by ionizing radiation- or hydrogen peroxide/metal ion-generated free radicals. Nucleic Acids Res. 26, 1228-1233. https://doi.org/10.1093/nar/26.5.1228
  31. Lawley, P.D. and Brookes, P. (1963) Further studies on the alkylation of nucleic acids and their constituent nucleotides. Biochem. J. 89, 127. https://doi.org/10.1042/bj0890127
  32. O'Connor, T. R., Boiteux, S. and Laval. J. (1988) Ring-opened 7- methylguanine residues in DNA are a block to in vitro DNA synthesis. Nucleic Acids Res. 16, 5879-5894. https://doi.org/10.1093/nar/16.13.5879
  33. Olinski, R, Zastawny, T., Budzbon, J., Skokowski, J., Zegarski, W. and Dizdaroglu, M. (1992) Oxidative DNA base damage and atioxidant enzyme activities in human lung cancer. FEBS Lett. 309, 193-198. https://doi.org/10.1016/0014-5793(92)81093-2
  34. Oshima, H., Tsuda, M., Adachi, H., Ogura, T., Sugimura, T. and Esumi, H. (1991) L-arginine-dependent formation of N- nitrosoamines by the cytosol of macrophages activated with lipopolysaccharide and interferon-gamma. Carcinogenesis 15, 1217-1220.
  35. Rydberg, B. and Lindahl, T. (1982) Non-enzymatic methylation of DNA by the intracellular methyl group donor S- adenosylmethionine is a potentially mutagenic reaction. EMBO J. 1, 211-216.
  36. Senturker, S., Auffret van der Kemp P, You, H. J., Doetsch, P. w., Dizdaroglu ,M. and Boiteux, S. (1998) Substrate specificities of the ntgl and ntg2 proteins of Saccharomyces cerevisiae for oxidized DNA bases are not identical. Nucleic Acids Res. 26, 5270-5276. https://doi.org/10.1093/nar/26.23.5270
  37. Singer, B. and Grunberger, D. (1983) Molecular Biology of Mutagens and Carcinogens. Plenum Press, New York.
  38. Singer, B., Sun, L. and Fraenkel-Conrat, H. (1974) Reaction of adenosine with ethylating agents. Biochemistry 23, 1913-1920.
  39. Smela, M. E., Harnm, M. L., Henderson, P. T., Harris C. M., Harris, T. M. and Essigman, J. M. (2002) The aflatoxin $B_{1}$ formamidopyrimidine adduct plays a major role in causing the types of mutations observed in human hepatocellular carcinoma. Proc. Natl. Acad. Sci. USA 99, 6655-6660. https://doi.org/10.1073/pnas.102167699
  40. Szyfter, K., Hemminki, K., Szyfter, W., Szmeja, Z., Banaszewski, J. and Pabiszczak, M. (1996) Tobacco-smoke associated N7- alkylguanine in DNA of larynx tissue and leukocytes. Carcinogenesis 17, 501-506. https://doi.org/10.1093/carcin/17.3.501
  41. Tudek, B., VanZeeland, A. A, Kusmierek, J. T. and Laval, J. (1998) Activity of Escherichia coli DNA-glycosylases on DNA damaged by methylating and ethylating agents and influence of 3-substituted adenine derivatives. Mutat. Res. 407, 169-186. https://doi.org/10.1016/S0921-8777(98)00005-6
  42. Tudek, B., Boiteux, S. and Laval, J. (1992) Biological properties of imidazole ring-opened N7-methylguanine in M13mp18 phage DNA. Nucleic Acids Res. 20, 3070-3084.
  43. Tudek, B., Graziewicz, M.-A., Kazanova, O., Zastawny, T. H., Obtulowicz, T. and LaVal, J. (1999) Mutagenic specificity of imdazole ring-opened 7-methylpurines in M13mp18 phage DNA. Acta Biochimica Polonica 46, 785-799.
  44. von Sonntag, C. (1987) The Chemical Basis of Radiation Biology, Taylor & Francis, London.
  45. Zastawny, T. H., Czerwiiiska, B., Drzewiecka, B. and Olinski, R. (1997) Radiation induced oxidative DNA base damage and its repair in nuclear matrix-associated DNA and in bulk DNA in hepatic chromatin of rat upon whole-body $\Upsilon$-irradiation. Free Radic. BioI. Med.22, 101-107. https://doi.org/10.1016/S0891-5849(96)00270-5

Cited by

  1. Recent advances in the structural mechanisms of DNA glycosylases vol.1834, pp.1, 2013, https://doi.org/10.1016/j.bbapap.2012.10.005
  2. Vibrational markers of structural distortion in adenine nucleobases upon DNA damage vol.13, pp.9, 2011, https://doi.org/10.1039/c0cp01731k
  3. Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation vol.31, pp.1, 2010, https://doi.org/10.1093/carcin/bgp262
  4. Cells deficient in PARP-1 show an accelerated accumulation of DNA single strand breaks, but not AP sites, over the PARP-1-proficient cells exposed to MMS vol.671, pp.1-2, 2009, https://doi.org/10.1016/j.mrfmmm.2009.09.006
  5. Crystal Structure Analysis of Ethyl 7-Phenyl-5-p-tolylpyrazolo[1,5-a]pyrimidine-3-carboxylate vol.571, pp.1, 2013, https://doi.org/10.1080/15421406.2012.741352
  6. Vertical detachment energies of anionic thymidine: Microhydration effects vol.133, pp.14, 2010, https://doi.org/10.1063/1.3488105
  7. Chemical Biology of N5-Substituted Formamidopyrimidine DNA Adducts vol.30, pp.1, 2017, https://doi.org/10.1021/acs.chemrestox.6b00392
  8. Formamidopyrimidine adducts are detected using the comet assay in human cells treated with reactive metabolites of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) vol.600, pp.1-2, 2006, https://doi.org/10.1016/j.mrfmmm.2006.04.005
  9. Pyrosequencing: applicability for studying DNA damage-induced mutagenesis vol.55, pp.8, 2014, https://doi.org/10.1002/em.21882
  10. Chemoprevention Against Arsenic-Induced Mutagenic DNA Breakage and Apoptotic Liver Damage in Rat Via Antioxidant and SOD1 Upregulation by Green Tea (Camellia sinensis) which Recovers Broken DNA Resulted from Arsenic-H2O2Related in Vitro Oxidant Stress vol.32, pp.4, 2014, https://doi.org/10.1080/10590501.2014.967061
  11. Replication of the 2,6-Diamino-4-hydroxy-N5-(methyl)-formamidopyrimidine (MeFapy-dGuo) Adduct by Eukaryotic DNA Polymerases vol.25, pp.8, 2012, https://doi.org/10.1021/tx300113e
  12. Functional Identification of an 8-Oxoguanine Specific Endonuclease from Thermotoga maritima vol.38, pp.6, 2005, https://doi.org/10.5483/BMBRep.2005.38.6.676
  13. Discovery and Mutagenicity of a Guanidinoformimine Lesion as a new Intermediate of the Oxidative Deoxyguanosine Degradation Pathway vol.134, pp.10, 2012, https://doi.org/10.1021/ja211435d
  14. Efficient Synthesis of14C-Labeled 1H-Pyrazolo[3,4-d]pyrimidine and Related [4.3.0]-Bicyclic Pyrimidino Systems vol.91, pp.5, 2008, https://doi.org/10.1002/hlca.200890102
  15. Mutagenic Spectra Arising from Replication Bypass of the 2,6-Diamino-4-hydroxy-N5-methyl Formamidopyrimidine Adduct in Primate Cells vol.26, pp.7, 2013, https://doi.org/10.1021/tx4001495
  16. Selective Incision of theα-N5-Methyl-Formamidopyrimidine Anomer byEscherichia coliEndonuclease IV vol.2010, 2010, https://doi.org/10.4061/2010/850234
  17. DNA Cleavage and Detection of DNA Radicals Formed from Hydralazine and Copper (II) by ESR and Immuno-Spin Trapping vol.27, pp.4, 2014, https://doi.org/10.1021/tx500011m
  18. The formation and biological significance of N7-guanine adducts vol.678, pp.2, 2009, https://doi.org/10.1016/j.mrgentox.2009.05.006
  19. The Formamidopyrimidines: Purine Lesions Formed in Competition With 8-Oxopurines From Oxidative Stress vol.45, pp.4, 2012, https://doi.org/10.1021/ar2002182
  20. Bacterial Base Excision Repair Enzyme Fpg Recognizes Bulky N7-Substituted-FapydG Lesion via Unproductive Binding Mode vol.15, pp.7, 2008, https://doi.org/10.1016/j.chembiol.2008.05.014
  21. Ethylene oxide and propylene oxide derived N7-alkylguanine adducts are bypassed accurately in vivo vol.22, 2014, https://doi.org/10.1016/j.dnarep.2014.08.001
  22. DNA damage by reactive species: Mechanisms, mutation and repair vol.37, pp.3, 2012, https://doi.org/10.1007/s12038-012-9218-2
  23. Contrasting Genome-Wide Distribution of 8-Hydroxyguanine and Acrolein-Modified Adenine during Oxidative Stress-Induced Renal Carcinogenesis vol.169, pp.4, 2006, https://doi.org/10.2353/ajpath.2006.051280
  24. Robust and Electron-Richcis-Palladium(II) Complexes with Phosphine and Carbene Ligands as Catalytic Precursors in Suzuki Coupling Reactions vol.15, pp.2, 2009, https://doi.org/10.1002/chem.200801296
  25. Formation of ring-opened and rearranged products of guanine: Mechanisms and biological significance vol.53, pp.1, 2012, https://doi.org/10.1016/j.freeradbiomed.2012.04.008
  26. Electrochemical and spectroscopic studies of ssDNA damage induced by hydrogen peroxide using graphene based nanomaterials vol.138, 2015, https://doi.org/10.1016/j.talanta.2015.02.019
  27. Fission yeast homologs of human XPC and CSB, rhp41 and rhp26, are involved in transcription-coupled repair of methyl methanesulfonate-induced DNA damage vol.86, pp.2, 2011, https://doi.org/10.1266/ggs.86.83
  28. Genotoxicity Induced byEugenia CaryophyllataInfusion vol.71, pp.7, 2008, https://doi.org/10.1080/15287390701839232
  29. Formamidopyrimidines in DNA: Mechanisms of formation, repair, and biological effects vol.45, pp.12, 2008, https://doi.org/10.1016/j.freeradbiomed.2008.07.004
  30. Cyclometalated rhodium and iridium complexes with imidazole containing Schiff bases: Synthesis, structure and cellular imaging vol.73, 2014, https://doi.org/10.1016/j.poly.2014.01.033
  31. Structural Basis for Error-Free Bypass of the 5-N-Methylformamidopyrimidine-dG Lesion by Human DNA Polymerase η andSulfolobus solfataricusP2 Polymerase IV vol.137, pp.22, 2015, https://doi.org/10.1021/jacs.5b02701
  32. Synthetic Studies on Formamidopyrimidines Related to Clofarabine vol.27, pp.8, 2008, https://doi.org/10.1080/15257770802257770
  33. Normal and reverse base pairing of Iz and Oz lesions in DNA: structural implications for mutagenesis vol.6, pp.68, 2016, https://doi.org/10.1039/C6RA14031A
  34. In vitro evaluation of baseline and induced DNA damage in human sperm exposed to benzo[a]pyrene or its metabolite benzo[a]pyrene-7,8-diol-9,10-epoxide, using the comet assay vol.25, pp.4, 2010, https://doi.org/10.1093/mutage/geq024
  35. Rapid inactivation and proteasome-mediated degradation of OGG1 contribute to the synergistic effect of hyperthermia on genotoxic treatments vol.12, pp.3, 2013, https://doi.org/10.1016/j.dnarep.2012.12.006
  36. Evidence That Msh1p Plays Multiple Roles in Mitochondrial Base Excision Repair vol.182, pp.3, 2009, https://doi.org/10.1534/genetics.109.103796