질소산화물의 선택적 촉매 환원 공정에서 플라즈마 방전의 영향

Effect of Plasma Discharge on Selective Catalytic Reduction of Nitrogen Oxides

목영선;강호철;이호원;남인식
Mok, Yeong Seon;Gang, Ho Cheol;Lee, Ho Won;Nam, In Sik

  • 발행 : 20030000

초록

저온 플라즈마와 촉매 복합공정에서 질소산화물의 제거에 대한 연구가 수행되었다. 선택적 촉매 환원에 의한 질소산화물 제거는 플라즈마 반응기의 특성에 영향을 받으므로 먼저 플라즈마 반응기의 특성을 개별적으로 평가한 후 두 공정을 결합하였다. 플라즈마 반응기의 경우 상온에서는 NO를 NO2로 쉽게 시킬 수 있었으나 온도의 증가에 따라 산화반응속도가 크게 감소되어 반응속도 증가를 위한 반응첨가제가 필요한 것으로 나타났다. 본 연구에서 반응첨가제로 사용한 것은 에틸렌이었으며, 에틸렌 존재하에서는 100-200 ℃ 범위에서도 NO의 산화반응이 빠르게 일어났다. 촉매 반응기(V2O5/TiO2)의 경우 플라즈마 방전에 의한 NO2/NO 농도비 변화에 따라 질소산화물 제거효율 증가가 나타났다. 플라즈마 반응기에서 에틸렌으로부터 생성되는 포름알데히드는 후단의 촉매반응기에서 완전히 제거시킬 수 있었으나, 일산화탄소 및 미반응 암모니아의 배출이 관찰되었다. 이와 같은 플라즈마/촉매 복합공정에서는 선택적촉매환원법의 반응온도(300-350 ℃)보다 훨씬 낮은 100-200 ℃ 범위에서 80% 이상의 NOx를 제거할 수 있었다.

Removal of nitrogen oxides using a non-thermal plasma process combined with catalyst was investigated. In this system, selective catalytic reduction of nitrogen oxides is affected by the operating condition of the plasma process, and thus the characteristics of the plasma process were separately examined before combining two processes. The oxidation of NO to NO2 in the plasma reactor greatly decreased as the temperature increased, which implies that an additive to increase the oxidation rate is necessary. In the presence of ethylene used as an additive, the oxidation of NO to NO2 was largely enhanced at relatively high temperatures in the range of 100-200 ℃. The removal efficiency of NOx on the catalyst(V2O5/TiO2) was found to get higher as the ratio of NO2 to NO increased by the plasma discharge. The byproduct formaldehyde formed from ethylene in the plasma reactor could be completely removed in the catalytic reactor while significant amount of carbon monoxide and ammonia slip were observed. The plasma-catalyst system used in this study was able to remove 80% of NOx or more at temperature range of 100 to200 ℃ that is much lower than typical temperature window of selective catalytic reduction(300-350 ℃).

키워드

참고문헌

  1. Radiat. Phys. Chem v.24 no.1 Pilot Plant Experience in Electron-Beam Treatment of Iron-Ore Sintering Flue Gas and Its Application to Coal Boiler Flue Gas Clean-up Kawamura, K.;Shui, V. H.
  2. Chemical Engineering Journal v.87 no.2 Optimization of a Dosing Strategy for an HC-SCR Diesel Exhaust After-Treatment System Westerberg, B.;Kunkel, C.;Odenbrand, C. U. I. https://doi.org/10.1016/S1385-8947(01)00214-5
  3. IEEE Transactions on Industry Applications v.31 no.5 NOx Removal Process Using Pulsed Discharge Plasma Mizuno, A.;Shimizu, K.;Chakrabarti, A.;Dascalescu, L.;Furutu, S. https://doi.org/10.1109/28.464504
  4. 12th Int. Symp. High Voltage Eng. Removal of NOx from Diesel Engine Exhaust Using Pulsed Electric Discharge Coupled with a Catalytic Reactor, Rajanikanth, B. S.;Ravi, V.
  5. IEEE Transactions on Plasma Science v.27 no.4 Positive Pulsed Corona Discharge Process for Simultaneous Removal of SO₂and $NO_x$ from Iron-Ore Sintering Flue Gas Mok, Y. S.;Nam, I. https://doi.org/10.1109/27.782299
  6. Catalysis Today v.4 no.2 Selective Catalytic Reduction of $NO_x$ Emitted by Nitric Acid Plants Luck, F.;Roiron, J. https://doi.org/10.1016/0920-5861(89)85051-5
  7. Pure and Applied Chemistry v.71 no.10 Environmental Applications of Low-Temperature Plasmas Penetrante, B. M.;Brusasco, R. M.;Merritt, B. T.;Vogtlin, G. E. https://doi.org/10.1351/pac199971101829
  8. Industrial & Engineering Chemistry Research v.39 no.10 Removal of NO and Formation of Byproducts in a Positive Pulsed Corona Discharge Reactor Mok, Y. S.;Kim, J. H.;Ham, S. W.;Nam, I. https://doi.org/10.1021/ie000239o
  9. SAE Paper 01FL-63 Plasma-Catalysis for Diesel Exhaust Treatment: Current State of Art Hoard, J.
  10. Applied Catalysis B Environmental v.28 no.2 Selective Catalytic Reduction of Nitrogen Oxides by Combining a Non-Thermal Plasma and a $V_2O_5-WO_3/TiO_2$ Catalyst Broer, S.;Hammer, T. https://doi.org/10.1016/S0926-3373(00)00166-1
  11. Catalysis Today v.72 no.3-4 An Examination of the Role of Plasma Treatment for Lean $NO_x$ Reduction over Sodium Zeolite Y and Gamma Alumina Part 1. Plasma Assisted $NO_x$ Reduction over NaY and Al₂O₃ Yoon, S.;Panov, A. G.;Tonkyn, R. G.;Ebeling, A. C.;Barlow, S. E.;Balmer, M. L. https://doi.org/10.1016/S0920-5861(01)00499-0
  12. Journal of Electrostatics v.44 no.1 Corona-Induced Non-Thermal Plasmas: Fundamental Study and Industrial Applications Yan, K.;Hui, H.;Cui, M.;Miao, J.;Wu, X.;Bao, C.;Li, R. https://doi.org/10.1016/S0304-3886(98)00019-9
  13. Plasma Chemistry and Plasma Processing v.18 no.1 Combined Effects of Pulsed Discharge Removal of NO, SO₂, and NH₃from Flue Gas van Hardeveld, R.;Zhou, L. M.;Rutgers, W. R. https://doi.org/10.1023/A:1021793327507
  14. Chemical Engineering & Technology v.22 no.6 Removal of Nitric Oxide in a Pulsed Corona Discharge Reactor Mok, Y. S.;Nam, I. https://doi.org/10.1002/(SICI)1521-4125(199906)22:6<527::AID-CEAT527>3.0.CO;2-5
  15. Trans. Electrochem. Soc. v.84 The Electrical Characteristics of the Ozone Discharge Manley, T. C.
  16. Electrical Breakdown of Gases Meeks, J. M.;Craggs, J. D.
  17. J. Phys. Chem. Ref. Data v.21 no.6 Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry Atkinson, R.;Baulch, D. L.;Cox, R. A.;Hampson Jr., R. F.;Kerr, J. A.;Troe, J.
  18. Advances in Chemical Physics(Vol. LXXX) Matzing, H.;Prigogine, I.(Ed.);Rice, S. A.(Ed.)
  19. Industrial & Engineering Chemistry Research v.38 no.5 Chemical Reaction Kinetics and Reactor Modeling of NOx Removal in a Pulsed Streamer Corona Discharge Reactor Sathiamoorthy, G.;Kalyana, S.;Finney, W. C.;Clark, R. J.;Locke, B. R. https://doi.org/10.1021/ie980544y
  20. SAE Paper 99FL-472 Effect of Propene on the Remediation of NOx from Engine Exhaust Dorai, R.;Kushner, M. J.
  21. Korean Soc. Atmospheric Environ. v.16 no.3 Characteristics of Non-Thermal Plasma Process for Air Pollution Control Song, Y.;Shin, D.;Shin, W.;Kim, K.;Choi, Y.;Lee, W.;Kim, S. J.