Structure -Properties Relations of Polypropylene/ Liquid Crystalline Polymer Blends

  • Sahoo, N.G. (Materials Science Centre) ;
  • Das, C.K. (Materials Science Centre) ;
  • Jeong, Hye-Won (Department of Polymer Science and Engineering, Pusan National University) ;
  • Ha, Chang-Sik (Department of Polymer Science and Engineering, Pusan National University)
  • Published : 2003.08.31

Abstract

The blends of polypropylene (PP) with glass filled thermotropic liquid crystalline polymer (LCP-g) have been prepared by melt mixing techniques at different blend ratios. The thermal, dynamic mechanical, crystalline and morphological characteristics of these blends were investigated. Higher percent crystallinity was observed for 10% level of LCP-g in the blend in comparison to that of other blend ratios. The thermal stability increased with LCP-g concentration in the blend with PP. The variation of storage modulus, stiffness and loss modulus as a function of blend ratios suggested the phase inversion at the 50% level of LCP-g in the blend. The scanning electron microscopy (SEM) photographs showed the creation of voids and destruction of the fiber structures during the dynamic mechanical measurements. Processing behavior of the blends depended on the fiber forming characteristics of LCP-g, which again varied with the molding temperatures.

Keywords

References

  1. D. R. Paul and S. Newman, Eds., Polymer Blends, Academic Press, New York, 1978, vol. 1&2
  2. D.E. Beers and J.E. Ramirez, J. Text. Inst., 81, 561 (1990)
  3. S. Blonski and W. Brostow, J. Chem. Phys., 95, 2890 (1991)
  4. A. Golovoy, M. Kozlowski, and M. Narkis, Polym. Eng. Sci., 32, 854 (1992)
  5. B. R. Bassett and A. F. Yee, Polym. Compos., 11, 10 (1990)
  6. F. P.La Mantia, P. L. Magagnini, and U. Pedretti, Polym, Networks & Blends, 2, 41 (1992)
  7. S. M. Hong, B. C. Kim, K. U. Kim, and I. J Chung, Polym. J.,23, 1347 (1991) https://doi.org/10.1295/polymj.23.1347
  8. E. Amendola, C. Carfagna, P. Netti, L. Nicolais, and S. Saiello, J. Appl. Polym. Sci., 50, 83 (1993)
  9. S. Joslin, W. jackson, and R. Farris, J. Appl. Polym. Sci., 54, 439 (1994)
  10. S. C. Tjong, S. Liu, and R. K. Y. Li, J. Mater. Sci., 30, 353 (1995)
  11. A. Datta and D. G. Baird, Polymer, 36, 505 (1995)
  12. M. T. Heino and J. V. Seppala, Polym. Bull., 30, 353 (1993)
  13. S. Bualek-Limcharoen, J. Samran, T. Amornsakchai, and W. Meesiri, Polym. Eng. Sci., 39, 312 (1999)
  14. J. Seppala, M. Heino, and C. Kapanen, J. Appl. Polym. Sci., 44, 1051 (1992)
  15. M. T. Heino, P. T. Hietaoja, T. P. Vainio, and J. V. Seppala, J. Appl. Polym. Sci., 51, 259 (1994)
  16. L. E. Alexander, in Polymer Science, Wiley Interscience. New York, 1969
  17. S. Roychowdhury and C. K. Das, Polym. and Polym. Compos., 8,(3), 177 (2000)
  18. C. S. Ha and S. C. Kim, J. Appl. Polym. Sci., 35, 2211 (1988)
  19. D. H. Weinkauf and D. R. Paul, J. Polym. Sci., Polym. Phys., 30, 837 (1992)
  20. M. Gomes, M. Scuccuglia, and R. E. S. Bretas, J. Mater. Sci.. 34, 1407 (1999)
  21. M. Takayanagi, Viscoelastic Properties of Crystalline Polymers, Memorandum of the Faculty of Engineering, Kyushu University, Vol. 23, No. 1
  22. G. S. Jang, W. J. Cho, and C. S. Ha,. J. Polym Sci., Polym. Phys., 39, 1001 (2001)
  23. G. S. Jang, W. J, Cho, C. S. Ha, W. Kim, and H. K. Kim,. Colloid Polym. Sci., 280, 424 (2002)