Effect of Hydrophilic-Lipophilic Balance of Drugs on Their Release Behavior from Amphiphilic Matrix

  • Yoo, Young-Tai (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Shin, Hyun-Woo (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Nam, Byung-Guk (Department of Materials Chemistry and Engineering, Konkuk University)
  • Published : 2003.08.31

Abstract

Organic drugs including aspirin, omeprazole, and naproxen with three different levels of octanol/water partition coefficient were examined for their release behavior from the amphiphilic PCL-b-PEO-b-PCL (PCEC) matrix. Scanning electron micrograph (SEM) of PCEC illustrated a well defined two-phase morphology consisted of dispersed poly(ethylene oxide) (PEO) domain and continuous polycaprolactone (PCL) phase. Differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) experiments veri tied that three model drugs are dissolved as a molecular dispersion in PCEC matrix. The release of hydrophilic aspirin closely followed the water absorption profile of the matrix indicating that its major fraction is present in PEO domain. However, substantial amount of aspirin present in less hydrophilic region displayed discontinuous biphasic release pattern. In the case of omeprazole with intermediate hydrophobicity consistent release behavior was observed for a period of 24 hrs after the rapid liberation of ca. 10% of the drug presumably partitioned in PEO phase. It was ascribed to the fact that the progressive hydration of PCEC matrix gradually increased the chance of drug/water exposure to compensate the exhaustion of device. Naproxen with the highest octanol/water distribution coefficient among three model drugs exhibited a limited release of 35% for 24 hrs. Finally, hydroxypropyl methylcellulose phthalate (HPMCP)/PCEC blend matrix demonstrated an accelerated and quantitative release of hydrophobic naproxen by generating high porosity and thereby expanding polymer/water interface.

Keywords

References

  1. S. B. Mitra. in Polymers as Biomaterials, S. W.Shalaby, Ed., Plenum Press, New York. 1984. pp 293
  2. Y. Huang. T. Chung. and T. Tzeng, Int. J. Pharm., 182, 93 (1999)
  3. Y. Hsu, J. D. Gresser. D. J. Trantolo, C. M. Lyons. P. R. J. Gangadhram, and D. L. Wise, J. Control. Rei., 40, 293 (1996)
  4. M. Perez. C. Zunitti. A. Lamprecht, N. Ubrich, A. Astier, M. Hoffman, R. Bodmeier, and P. Maincent, J. Control. Rei., 65, 429 (1999)
  5. F. Delie, M. Berton, E. Allemann, and R. Gurny, Int. J. Pharm., 214, 25 (2001) https://doi.org/10.1016/S0378-5173(00)00627-X
  6. C. W. Lee and Y. Kimura, Macromol. Res., 11, 42 (2003)
  7. M. A. Benoit, B. Baras, and J. Gillard, Int. J. Pharm., 184, 73 (1999) https://doi.org/10.1016/S0378-5173(99)00109-X
  8. L. Youxin, C. Volland, and T. Kissel, J. Control. ReI., 32, 121 (1994)
  9. W. Lin, D. R., Flanagan, and R. J. Linhardt, Polymer, 40, 1731 (1999)
  10. Y.T. Yoo and C. Y. Chung, Polymer(Korea), 18, 103 (1994)
  11. W. S. Kim, H. S. Song, B. O. Lee, K. H. Kwon, Y. S. Lim, and M. S. Kim, Macromol. Res., 10, 253 (2002)
  12. I. Molina, S. Li, M. B. Martinez, and M. Vert, Biomaterials, 22, 363 (2001)
  13. J. M. Bezemer, R. Radersma, D. W. Grijpma, P.J. Dijkstra, J. Feijen, and C. A. van Blitterswijk, J. Control. ReI., 64, 179 (2000)
  14. A. Boobis, M. Rawlins, S. Thomas, and M. Wilkins, in Therapeutic Drugs, C. Dollery, Ed., Churchill Livingstone Press, London, 1999
  15. A. L. Iordanskii, M. M. Feldstein, V. S. Markin, J. Hadgragt, and N. A. Plate, Eur. J. Pharm. Biopharm., 49, 287 (2000)
  16. R. H. Muller and K. Peters, Int. J. Pharm., 160, 229 (1998)
  17. P. Le Corre, J. H. Rytting, V. Gajan, F. Chavanne, and R. Le Verge, J. Microencapsul., 14, 243 (1997)
  18. T. Gorner, R. Gref, D. Michenot, F. Sommer, M. N. Tran, and E. Dellacherie, J. Control. ReI., 57, 259 (1999)
  19. T. Higuchi, J. Pharm. Sci., 50, 1145 (1963)