ON F-HARMONIC MAPS
AND CONVEX FUNCTIONS

TAE HO KANG

Abstract. We show that any F-harmonic map from a compact manifold M to N is necessarily constant if N possesses a strictly-convex function, and prove 'Liouville type theorems' for F-harmonic maps. Finally, when the target manifold is the real line, we get a result for F-subharmonic functions.

1. F-harmonic maps and F-subharmonic functions

Recently, M. Ara[1] introduced the concept of F-harmonic maps, and unified the theory of harmonic maps, p-harmonic maps, exponentially harmonic maps and so on. More precisely, let $F : [0, \infty) \to [0, \infty)$ be a C^2 function such that $F' > 0$ on $(0, \infty)$. Let $\phi : (M, g) \to (N, h)$ be a smooth map between riemannian manifolds with metrics g and h respectively. Then ϕ is an F-harmonic map if it satisfies the F-tension field equation weakly:

$$\text{Trace} \nabla (F' \left(\frac{||d\phi||^2}{2} \right) d\phi) = 0,$$

i.e., for every compactly supported vector field X along ϕ

$$\int_M < F' \left(\frac{||d\phi||^2}{2} \right) d\phi, \nabla X > \geq 0,$$

Received May 9, 2003
2000 Mathematics Subject Classification 58E20
Key words and phrases. F-harmonic maps, convex functions, F-subharmonic functions
where $\|d\phi\|$ denotes the Hilbert-Schmidt norm of the differential $d\phi$ of ϕ, which is the differential 1-form with values in the induced bundle $\phi^{-1}TN$ over M. It is harmonic, p-harmonic, α-harmonic and exponentially harmonic when $F(t) = t$, $(2t)^{p/2} / p (p \geq 4)$, $(1 + 2t)^{\alpha} (\alpha > 1, \dim M = 2)$ and e^t, respectively. Finally we define an F-subharmonic function. A smooth function $\phi : M \rightarrow R$ is an F-subharmonic function if ϕ satisfies the inequality

$$\text{Trace}\nabla(F''(\frac{\|d\phi\|^2}{2})d\phi) \geq 0$$

weakly, i.e.,

$$\int_M < F''(\frac{\|d\phi\|^2}{2})d\phi, d\tau > \leq 0$$

for any compactly supported, nonnegative smooth function τ on M. It is subharmonic and p-subharmonic when $F(t) = t$ and $(2t)^{p/2} / p (p \geq 4)$, respectively.

2. Main results

In this article we prove the following theorems.

Theorem 1. Suppose that a smooth map $\phi : M \rightarrow N$ is F-harmonic. If M is compact and there exists a strictly convex function on N, then ϕ is a constant map.

Theorem 2. Let M and N be riemannian manifolds. Suppose that M is complete and noncompact, and N has a strictly convex function $f : N \rightarrow R$ such that the uniform norm $\|df\|$ is bounded. If a smooth map $\phi : M \rightarrow N$ is F-harmonic with $\int_M F''(\frac{\|d\phi\|^2}{2})\|d\phi\| < \infty$, then ϕ is a constant map.

Theorem 3. Let M be a complete noncompact manifold. If any F-subharmonic function $\phi : M \rightarrow R$ with

$$\int_M F''(\frac{\|d\phi\|^2}{2})\|d\phi\| < \infty,$$
then ϕ is a constant map.

Remark. In the above theorems, for the case of $F(t) = t$, i.e., harmonic maps or $F(t) = (2t)^{p/2}/p$, i.e., p-harmonic maps, see [3] and [6], respectively. In these cases, the energy $\int_M F'(\|d\phi\|^2)\|d\phi\|$ reduces to $\int_M \|d\phi\|$ (cf. [7]) and $\int_M \|d\phi\|^{p-1}$ (cf. [4, 5, 6]), respectively.

3. Proofs

First we show the following lemma.

Lemma. Let $\phi : M \rightarrow N$ be a smooth map between Riemannian manifolds and $f : N \rightarrow \mathbb{R}$ be a smooth function. Then the following identity holds for every smooth function η on M.

$$< F'(\frac{\|d\phi\|^2}{2})d(f \circ \phi), d\eta > = -F'(\frac{\|d\phi\|^2}{2})\text{Trace}(\nabla df)(d\phi, d\phi)\eta + < \nabla(\eta \cdot (\text{grad} f) \circ \phi), F'(\frac{\|d\phi\|^2}{2})d\phi > .$$

Proof. Let $\{e_i\}$ be an orthonormal frame around some point of M which satisfies $\nabla e_i = 0$ at that point. Then

$$< \nabla(\eta \cdot (\text{grad} \circ \phi), F'(\frac{\|d\phi\|^2}{2})d\phi >$$

$$= \sum_i < \nabla e_i(\eta \cdot (\text{grad} \circ \phi), F'(\frac{\|d\phi\|^2}{2})d\phi(e_i) >$$

$$= \sum_i d\eta(e_i) F'(\frac{\|d\phi\|^2}{2}) < \text{grad} f \circ \phi, d\phi(e_i) >$$

$$+ \sum_i \eta F'(\frac{\|d\phi\|^2}{2}) < \nabla d\phi(e_i) (\text{grad} f) \circ \phi, d\phi(e_i) >$$

$$= < F'(\frac{\|d\phi\|^2}{2})d(f \circ \phi), d\eta > + \eta F'(\frac{\|d\phi\|^2}{2})\text{Trace}(\nabla df)(d\phi, d\phi).$$
where the last term was calculated as follows;

\[
\sum_i \left< \nabla_{d\phi(e_i)} (\text{grad} f) \circ \phi, d\phi(e_i) \right>
\]

\[
= \sum_i \nabla_{d\phi(e_i)} < (\text{grad} f) \circ \phi, d\phi(e_i) >
\]

\[
- \sum_i < (\text{grad} f) \circ \phi, \nabla_{d\phi(e_i)} d\phi(e_i) >
\]

\[
= \sum_i \nabla_{d\phi(e_i)} (d\phi(e_i)f) - \sum_i \nabla_{d\phi(e_i)} d\phi(e_i)f
\]

\[
= \sum_i \nabla_{d\phi(e_i)} df(d\phi(e_i)) - \sum_i df(\nabla_{d\phi(e_i)} d\phi(e_i))
\]

\[
= \sum_i (\nabla_{d\phi(e_i)} df)(d\phi(e_i))
\]

\[
= \text{Trace}(\nabla df)(d\phi, d\phi).
\]

\[\Box\]

Proof of Theorem 1. Let \(f : N \to R \) be a strictly convex function. Taking \(\eta = 1 \) in Lemma and integrating on \(M \), we obtain

\[
\int_M F'(\frac{||d\phi||^2}{2}) \text{Trace}(\nabla df)(d\phi, d\phi) = 0,
\]

since \(\phi \) is \(F \)-harmonic map. Thus we have \(F'(\frac{||d\phi||^2}{2}) = 0 \), which implies that \(\frac{||d\phi||^2}{2} = 0 \), i.e., \(\phi \) is constant.

\[\Box\]

Proof of Theorem 2. Let us fix a point of \(M \) and denote \(B_r \) the geodesic ball with radius \(r \) and centered at this point. Then there exists a smooth function \(\eta \) on \(M \) such that

\[
0 \leq \eta \leq 1, \quad ||d\eta|| \leq \frac{c}{r},
\]
\[\eta = \begin{cases}
1 & \text{on } B_r \\
0 & \text{on } M \setminus B_{2r},
\end{cases} \]

where \(c \) is a positive constant which does not depend on \(r \). Then it follows from Lemma that

\[
\int_M F'(\frac{\|d\phi\|^2}{2}) \text{Trace}(\nabla^2 f)(d\phi, d\phi) \\
= -\int_M F'(\frac{\|d\phi\|^2}{2}) < d(f \circ \phi), d\eta > \\
\leq \int_M F'(\frac{\|d\phi\|^2}{2})\|df\|\|d\phi\|d\eta \\
\leq \frac{c}{r} \int_M F'(\frac{\|d\phi\|^2}{2})\|d\phi\| \to 0 \quad (\text{as } r \to \infty).
\]

Thus we obtain \(F'(\frac{\|d\phi\|^2}{2}) = 0 \), which implies that \(\phi \) is constant. \(\square \)

Proof of Theorem 3. Taking a nondecreasing strictly convex function \(f \) with bounded derivative on the real line. Then for any nonnegative smooth function \(\eta \) with compact support, we get

\[
\text{div} \left[\sum_i F'(\frac{\|d\phi\|^2}{2}) d\phi(e_i) \cdot \eta \cdot (\nabla f) \circ \phi \right] e_i \\
= \sum_i < e_i \{ F'(\frac{\|d\phi\|^2}{2}) d\phi(e_i) \cdot \eta \cdot (\nabla f) \circ \phi \} e_1, e_2 > \\
= \sum_i e_i \{ F'(\frac{\|d\phi\|^2}{2}) d\phi(e_i) \cdot \eta \cdot (\nabla f) \circ \phi \}
\]
 Integrating this equation over M and using assumptions, we obtain

$$\int_M \nabla \{\eta \cdot (\text{grad} f) \circ \phi\}, F'(\frac{||d\phi||^2}{2})d\phi >$$

$$= -\int_M \text{trace}(\nabla(F'(\frac{||d\phi||^2}{2})d\phi) \cdot \eta \cdot (\text{grad} f \circ \phi) \leq 0.$$

From this inequality and Lemma, we have

$$\int_M F'(\frac{||d\phi||^2}{2})\text{Trace}(\nabla f)(d\phi, d\phi)\eta$$

$$= \int_M \nabla \{\eta \cdot (\text{grad} f) \circ \phi\}, F'(\frac{||d\phi||^2}{2})d\phi >$$

$$- \int_M < F'(\frac{||d\phi||^2}{2})d(f \circ \phi), d\eta >$$

$$\leq -\int_M < F'(\frac{||d\phi||^2}{2})d(f \circ \phi), d\eta >.$$

Then we can argue as in Theorem 2.

Acknowledgement
This work was supported by University of Ulsan Research Fund of 2002.
ON F-HARMONIC MAPS AND CONVEX FUNCTIONS

REFERENCES

Department of Mathematics
University of Ulsan
Ulsan 680–749, Korea
E-mail: thkang@mail.ulsan.ac.kr