ON SLIGHTLY α-CONTINUOUS FUNCTIONS

G.I. CHAE, T. NOIRI AND J.S. KIM

Abstract. In [11] the feeble continuity is introduced and then the weak and strong forms of feeble (or, equivalently α-continuity) continuity are studied. In this note, we introduce a type of function called a slightly α-continuous function and study several properties of it.

1. Introduction

Since the concept of feeble continuity is introduced in [9], the weak and strong forms of it are defined and studied here and there. For example, after a year Mashhour, Hasanem and El-Deeb have defined α-continuity in [13] and the notion of almost feeble continuity is, in [12], defined and studied its properties and relations. Among them feeble continuity and α-continuity are equivalent because it is proved in [6] that feebly open sets coincide with α-open sets.

We denote topological spaces by X, Y and Z on which no separation axioms are assumed, and the closure and the interior of a subset S of X by $\text{Cl}_X(S)$ and $\text{Int}_X(S)$ (simply, $\text{Cl}(S)$ and $\text{Int}(S)$), respectively. S is said to be semi-open [7] if there exists an open set O such that $O \subset S \subset \text{Cl}(O)$ and its complement is called semi-closed. The intersection of all semi-closed sets containing S is called the semi-closure of S and denoted by $s\text{Cl}(S)$. $S \subset X$ is said to be α-open.
if \(S \subseteq \text{Int} \left(\text{Cl} \left(\text{Int}(S) \right) \right) \) and its complement is called \(\alpha \)-closed. The intersection of all \(\alpha \)-closed sets containing \(S \) is called the \(\alpha \)-closure of \(S \) and denoted by \(\alpha \text{Cl}(S) \). It is known in [9] that a feebly open set, which coincides with an \(\alpha \)-open set, is defined as a set if there is an open set \(U \) such that \(U \subseteq S \subseteq \text{sCl}(U) \).

Throughout this paper, we also denote the family of all \(\alpha \)-open (resp. semi-open, open and clopen) sets of \(X \) by \(\alpha \text{O}(X) \) (resp. \(\tau(X) \) and \(\text{C}(X) \)), and denote the family of \(\alpha \)-open (resp. semi-open, open and clopen) sets of \(X \) containing \(x \) by \(\alpha \text{O}(X,x) \) (resp. \(\text{SO}(X,x) \), \(\tau(X,x) \) and \(\text{C}(X,x) \)).

Definition 1.1. A function \(f : X \rightarrow Y \) is called semi-continuous (s.C.) \([8]\) (resp. almost semi-continuous (a.s.C.) \([1]\), semi \(\theta \)-continuous (s.\(\theta \).C.) \([1]\) and weakly semi-continuous (w.s.C.) \([1]\)) if for each \(x \in X \) and each \(V \in \tau(Y,f(x)) \), there exists \(U \in \text{SO}(X,x) \) such that \(f(U) \subseteq V \) (resp. \(f(U) \subseteq \text{Int} \left(\text{Cl}(V) \right) \), \(f(\text{Cl}(U)) \subseteq \text{Cl}(V) \) and \(f(U) \subseteq \text{Cl}(V) \)).

Definition 1.2. A function \(f : X \rightarrow Y \) is called slightly semi-continuous (sl.s.C.) \([15]\) (resp. slightly continuous (sl.C.) \([4]\)) if for each \(x \in X \) and each \(V \in \text{CO}(Y,f(x)) \), there exists \(U \in \text{SO}(X,x) \) (resp. \(U \in \tau(X,x) \)) such that \(f(U) \subseteq V \).

Definition 1.3 A function \(f : X \rightarrow Y \) is called almost continuous (a.C.) \([17]\) (resp. \(\theta \)-continuous (\(\theta \).C.) \([3]\) and weakly continuous (w.C.) \([7]\)) if for each \(x \in X \) and each \(V \in \tau(Y,f(x)) \), there is \(U \in \tau(X,x) \) such that \(f(U) \subseteq \text{Int} \left(\text{Cl}(V) \right) \) (resp. \(f(\text{Cl}(U)) \subseteq \text{Cl}(V) \) and \(f(U) \subseteq \text{Cl}(V) \)).

2. Slightly \(\alpha \)-continuous functions

Definition 2.1. A function \(f : X \rightarrow Y \) is called slightly \(\alpha \)-continuous (sl.\(\alpha \).C.) if for each \(x \in X \) and each \(V \in \text{CO}(Y,f(x)) \), there exists \(U \in \alpha \text{O}(X,x) \) such that \(f(U) \subseteq V \).

Theorem 2.1. For a function \(f : X \rightarrow Y \), the following are equivalent:
(a) \(f \) is \(\alpha \)-C.,
(b) \(f^{-1}(V) \in \alpha O(X) \) for each \(V \in CO(Y) \),
(c) \([X - f^{-1}(V)] \in \alpha O(X) \) for each \(V \in CO(Y) \).

Proof (a) \(\Rightarrow \) (b) \(\cdot \) Let \(V \in CO(Y) \) and let \(x \in f^{-1}(V) \). Then \(f(x) \in V \) and there is \(U_x \in \alpha O(X, x) \) such that \(f(U_x) \subset V \) since \(f \) is \(\alpha \)-C. Thus we have \(f^{-1}(V) = \bigcup \{ U_x : x \in f^{-1}(V) \} \) and so \(f^{-1}(V) \) is the union of \(\alpha \)-open sets. Hence \(f^{-1}(V) \in \alpha O(X) \) because \(\alpha O(X) \) is a topology on \(X \). The remainders of proof are easy and are thus omitted \(\square \).

The following are obtained easily since \(\alpha O(X) \subset SO(X) \) in any space \(X \).

Theorem 2.2 Slight continuity implies slight \(\alpha \)-continuity

Theorem 2.3 Slight \(\alpha \)-continuity implies slight semi-continuity.

Example 2.1. Let \(X = \{a, b, c\} \), \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\} \) and \(\sigma = \{\emptyset, \{a\}, \{b, c\}, X\} \). Define a function \(f : (X, \tau) \to (X, \sigma) \) by \(f(a) = f(c) = a \) and \(f(b) = b \). Then it is easy to prove \(f \) is \(\alpha \)-C. However \(f \) is not \(\alpha \)-C because \(f^{-1}(\{a\}) = \{a, c\} \) is not \(\alpha \)-open in \((X, \tau) \).

Theorem 2.4 If \(f : X \to Y \) is \(\alpha \)-C. and \(A \in \alpha O(X) \), then the restriction \(f|A \) is \(\alpha \)-C.

Proof Let \(V \in CO(Y) \). Then \((f|A)^{-1}(V) = A \cap f^{-1}(V) \in \alpha O(X) \) since \(\alpha O(X) \) is a topology on \(X \). Therefore, \(f|A \) is \(\alpha \)-C. \(\square \)

Definition 2.2 A function \(f : X \to Y \) is said to be \(\alpha \)-irresolute [10] if for each \(V \in \alpha O(Y) \), \(f^{-1}(V) \in \alpha O(X) \), and to be pre-feeably-open [6] if for each \(U \in \alpha O(X) \), \(f(U) \in \alpha O(Y) \)

Theorem 2.5. If \(f : X \to Y \) is \(\alpha \)-irresolute and \(g : Y \to Z \) is \(\alpha \)-C., then \(g \circ f \) is \(\alpha \)-C.

Proof Let \(V \in CO(Z) \). Then \(g^{-1}(V) \in \alpha O(Y) \). Since \(f \) is \(\alpha \)-irresolute, \(f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \in \alpha O(X) \). Thus \(g \circ f \) is \(\alpha \)-C. \(\square \)
Theorem 2.6. Let \(f : X \to Y \) be \(\alpha \)-irresolute and pre-feebly-open surjection, and let \(g : Y \to Z \) be a function. Then \(g \circ f \) is sl.\(\alpha \).C. if and only if \(g \) is sl.\(\alpha \).C.

Proof. Let \(g \circ f \) be sl.\(\alpha \).C. and \(V \in CO(Z) \). Then \((g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)) \in \alpha O(X) \). Since \(f \) is pre-feebly-open, \(f(f^{-1}(g^{-1}(V))) \in \alpha O(Y) \). Hence \(g^{-1}(V) \in \alpha O(Y) \). Thus \(g \) is sl.\(\alpha \).C. We have its opposite from Theorem 2.5. \(\square \)

The following diagram is obtained from the above and the references:

\[
\begin{array}{cccccc}
C. & \Rightarrow & a.C. & \Rightarrow & \theta.C. & \Rightarrow & w.C. & \Rightarrow & sl.C. & \Rightarrow & sl.\alpha.C. \\
\downarrow & & \checkmark \\
s.C. & \Rightarrow & a.s.C. & \Rightarrow & \theta.s.C. & \Rightarrow & w.s.C. & \Rightarrow & sl.s.C. \\
\end{array}
\]

3. More Characterizations and Comparisons

It is well known that a filterbase \(B \) in \(X \) is said to be residually in \(U \subset X \) if there is \(B \in B \) such that \(B \subset U \), and a net \(\{s\lambda : \lambda \in D\} \) in \(X \) is said to be residually in \(U \subset X \) if there is a \(\lambda_0 \in D \) such that \(\lambda_0 \leq \lambda \) implies \(\{s\lambda\} \in U \). We say that a filterbase \(B \) in \(X \) converges to \(x \in X \) if \(B \) is residually in every \(U \in \tau(X, x) \) and a net \(\{s\lambda\}_{\lambda \in D} \) in \(X \) converges to \(x \in X \) if \(\{s\lambda\}_{\lambda \in D} \) is residually in every \(U \in \tau(X, x) \).

In [11] a filterbase having a concept, which is weaker than one of convergent filterbase, is defined to study more properties of \(\alpha \)-irresolute functions. We defined the following to obtain more characterizations of sl.\(\alpha \).C. function.

Definition 3.1. A filterbase \(B \) in \(X \) is said to be \(\alpha \)-converge (resp. \(c \)-converge) to \(x \in X \) [11] if \(B \) is residually in \(U \) for each \(U \in \alpha O(X, x) \) (resp. \(U \in CO(X, x) \)).

Definition 3.2. Let \((D, \preceq) \) be a directed set. A net \(\{s\lambda : \lambda \in D\} \) in \(X \) is said to \(\alpha \)-converge (resp. \(c \)-converge) to \(x \in X \) if \(\{s\lambda\}_{\lambda \in D} \) is residually in \(U \) for each \(U \in \alpha O(X, x) \) (resp. \(U \in CO(X, x) \)).
THEOREM 3.1. For a function \(f : X \to Y \), the following are equivalent:

(a) \(f \) is \(\text{sl.}\alpha.C. \) at \(x \).

(b) If a filterbase \(\mathcal{B} \) in \(X \) is residually in each \(U \in \alpha O(X, x) \), then \(f(\mathcal{B}) \) in \(Y \) is residually in every \(V \in CO(Y, f(x)) \).

(c) If a net \(\{ s_\lambda \}_{\lambda \in \Delta} \) in \(X \) is residually in each \(U \in \alpha O(X, x) \), then \(\{ f(s_\lambda) \}_{\lambda \in \Delta} \) is residually in every \(V \in CO(Y, f(x)) \).

Proof. (a) \(\Rightarrow \) (b) Let (a) be true and \(V \in CO(Y, f(x)) \) and \(U \in \alpha O(X, x) \) such that \(f(U) \subset V \). Assume a filterbase \(\mathcal{B} \) in \(X \) is residually in each \(U \in \alpha O(X, x) \). Then there is \(E \in \mathcal{B} \) such that \(E \subset U \). So we have \(f(E) \subset f(U) \subset V \), which proves (b).

(b) \(\Rightarrow \) (c): Let (b) be true and \(V \in CO(Y, f(x)) \). Assume a net \(\{ s_\lambda \}_{\lambda \in \Delta} \) is residually in each \(U \in \alpha O(X, x) \). Thus there is \(\lambda_0 \in \Delta \) such that \(\lambda_0 \leq \lambda \) implies \(s_\lambda \in U \). To show (c) let \(E_k = \{ s_\lambda : k \leq \lambda \} \) and \(B = \{ E_k \} \). Then \(B \) is also residually in the \(U \) since it is a filterbase in \(X \) which is generated by \(\{ s_\lambda \}_{\lambda \in \Delta} \). Thus from (b), \(f(B) = \{ f(E_k) \} \) is residually in \(V \in CO(Y, f(x)) \), that is, there is an \(f(E_{k_0}) \in f(\mathcal{B}) \) such that \(f(E_{k_0}) \subset V \) and there is thus a \(k_0 \in \Delta \) such that \(f(s_{k_0}) \in V \) and \(k_0 \leq \lambda \) implies \(f(s_\lambda) \in V \) because \(E_{k_0} = \{ s_\lambda : k_0 \leq \lambda \} \). Hence \(\{ f(s_\lambda) \}_{\lambda \in \Delta} \) is is residually in \(V \). So (c) holds.

(c) \(\Rightarrow \) (a): Suppose that \(f \) is not \(\text{sl.}\alpha.C. \) at \(x \in X \). Then there exists a \(V \in CO(Y, f(x)) \) such that \(f(U) \notin V \) for each \(U \in \alpha O(X, x) \). Thus \(U \notin f^{-1}(V) \). For each \(U \in \alpha O(X, p) \), we have \(U \subset Y - f^{-1}(V) = f^{-1}(Y - V) \). So \(U \cap f^{-1}(Y - V) \neq \emptyset \). In order to find a net not \(\alpha \)-converging to \(f(x) \), we may partially order \(\alpha O(X, x) \) by set-inclusion and also direct it by \(\leq \) as defined by \(A \leq B \) iff \(B \subset A \) for each \(A, B \in \alpha O(X, x) \). Let \(s : \alpha O(X, x) \to X \) be a selection function defined by \(s(U) \equiv s_U \subset U \cap f^{-1}(Y - V) \) for each \(U \in \alpha O(X, x) \). Then \(\{ s_U \}_{U \in \alpha O(X, x)} \) is a net in \(X \) \(\alpha \)-converging to \(x \). Since \(s_U \in U \cap f^{-1}(Y - V) \) and \(f(s_U) \in f(U \cap f^{-1}(Y - V)) \subset f(U) - V \), we have \(f(s_U) \notin V \) for each \(U \in \alpha O(X, x) \). Thus \(\{ f(s_U) \}_{U \in \alpha O(X, x)} \) is not residually in \(V \in CO(Y, f(x)) \). It contradicts. Thus \(f \) is \(\text{sl.}\alpha.C. \). \(\square \)
Corollary 3.1. For a function \(f : X \to Y \), the following are equivalent:

(a) \(f \) is \(\text{sI.a.C.} \).

(b) For each \(x \in X \) and each filterbase \(\mathcal{B} \) in \(X \) \(\alpha \)-converging to \(x \), \(f(\mathcal{B}) \) \(c \)-converges to \(f(x) \).

(c) For each \(x \in X \) and each net \(\{s_\lambda\}_{\lambda \in D} \) in \(X \) \(\alpha \)-converging to \(x \), \(\{f(s_\lambda)\}_{\lambda \in D} \) \(c \)-converges to \(f(x) \).

Definition 3.3. A space \(X \) is called:

(a) \(\alpha \)-Hausdorff [11] (resp. ultra Hausdorff (written as UT\(\alpha \)) [18]) if every two distinct points of \(X \) can be separated by disjoint \(\alpha \)-open (resp. clopen) sets,

(b) ultra normal [18] if each pair of nonempty disjoint closed sets can be separated by disjoint clopen sets,

(c) mildly compact [18] if every clopen cover of \(X \) has a finite subcover,

(d) quasi H-closed (written as QHC) [16] if every open cover of \(X \) has a finite proximate subcover,

(d) \(F \)-closed (written as FC) [2] if every \(\alpha \)-open cover of \(X \) has a finite proximate subcover.

Definition 3.4. A space \(X \) is called \(\alpha \)-normal if each pair of nonempty disjoint closed sets can be separated by disjoint \(\alpha \)-open sets.

Theorem 3.2. If \(f : X \to Y \) is an \(\text{sI.a.C.} \) injection and \(Y \) is UT\(\alpha \), then \(X \) is \(\alpha \)-Hausdorff.

Proof. Let \(x_1, x_2 \in X \) and \(x_1 \neq x_2 \). Then there are \(V_1, V_2 \in \text{CO}(Y) \) such that \(f(x_1) \in V_1, f(x_2) \in V_2 \) and \(V_1 \cap V_2 = \emptyset \) because \(Y \) is UT\(\alpha \). By Theorem 2.1, \(x_i \in f^{-1}(V_i) \in \alpha O(X) \) for \(i = 1, 2 \). Since \(f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset \), \(X \) is \(\alpha \)-Hausdorff. \(\square \)

Theorem 3.3. If \(f : X \to Y \) is an \(\text{sI.a.C.} \) and closed injection and \(Y \) is ultra normal, then \(X \) is \(\alpha \)-normal.
Proof. Let F_1 and F_2 be any disjoint closed subsets of X. Since Y is ultra normal, two disjoint closed subsets of Y, $f(F_1)$ and $f(F_2)$, are separated by disjoint clopen sets V_1 and V_2, respectively. So by Theorem 2.1, $F_i \subset f^{-1}(V_i), f^{-1}(V_i) \in \alpha O(X)$ for $i = 1, 2$ and $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$. Thus X is α-normal. □

Lemma 3.1. QHC spaces coincide with FC spaces.

Proof. Let X be FC. Then X is also QHC because $\tau(X) \subset \alpha O(X)$. Conversely, let X be QHC and let $\mathcal{G} = \{U_i \mid U_i \in \alpha O(X), i \in \nabla\}$ such that $X \subset \bigcup_{i \in \nabla} U_i$. Then for each $i \in \nabla$, $U_i \subset \text{IntClInt}(U_i)$ because $U_i \in \alpha O(X)$. Thus $X \subset \bigcup_{i \in \nabla} \text{IntClInt}(U_i)$. Since X is QHC and $\mathcal{G}^* = \{\text{IntClInt}(U_i) \mid i \in \nabla\}$ is an open cover of X, there exists a finite subset $\nabla_0 = \{i_1, i_2, \ldots, i_n\}$ of ∇ such that $X \subset \bigcup_{k=1}^{k=m} \text{Cl}(\text{IntClInt}(U_{i_k}))$ since $\text{IntClInt}(U_{i_k}) \subset \text{Cl}(U_{i_k})$ for $k = 1, 2, \ldots, n$, we have $X \subset \bigcup_{k=1}^{k=m} \text{Cl}(U_{i_k})$. Hence X is FC. □

Theorem 3.4. If $f : X \to Y$ is an sl.α.C surjection and X is quasi H-closed, then Y is mildly compact.

Proof. Let $\{V_\lambda \mid V_\lambda \in CO(Y), \lambda \in \nabla\}$ be a cover of Y. Since f is sl.α.C., $f^{-1}(V_\lambda) \in \alpha O(X)$ for each $\lambda \in \nabla$. Thus $\{f^{-1}(V_\lambda) \mid \lambda \in \nabla\}$ is an α-open cover of X. Since X is quasi H-closed and is thus FC from Lemma 3.1, there is a finite subclass ∇_0 of ∇ such that $X \subset \bigcup_{\alpha \in \nabla_0} \text{Cl}(f^{-1}(V_\alpha))$. Since $f^{-1}(V_\alpha) \in \alpha O(X), f^{-1}(V_\alpha) \subset \text{IntClInt}(f^{-1}(V_\alpha))$ and so $\text{Cl}(f^{-1}(V_\alpha)) \subset \text{ClIntClInt}(f^{-1}(V_\alpha)) \subset \text{ClIntCl}(f^{-1}(V_\alpha))$. Moreover, by Theorem 2.1 $f^{-1}(V_\alpha)$ is α-closed and $\text{ClIntCl}(f^{-1}(V_\alpha)) \subset f^{-1}(V_\alpha)$ Consequently, we obtain $X = \bigcup_{\alpha \in \nabla_0} \text{Cl}(f^{-1}(V_\alpha)) \subset \bigcup_{\alpha \in \nabla_0} f^{-1}(V_\alpha)$. Therefore, $Y = \bigcup_{\alpha \in \nabla} V_\alpha$. Hence Y is mildly compact. □

Example 3.1. Let (R, T) and (R, U) be the indiscrete and the usual space of set of real numbers, respectively. Then the identity $I : (R, T) \to (R, U)$ is sl.α.C., but not a.C.

Theorem 3.5. If $f : X \to Y$ is sl.α.C. and Y is extremally disconnected, then f is a.C.
Proof. Let \(x \in X \) and \(V \in \tau(Y, f(x)) \). Since \(Y \) is extremally disconnected, \(Cl(V) \in \mathcal{O}(Y) \) and by Theorem 2.1 \(f^{-1}(Cl(V)) \) is \(\alpha \)-open and \(\alpha \)-closed in \(X \). Therefore, we have \(x \in f^{-1}(V) \subset f^{-1}(Cl(V)) \subset \text{IntCl} \cap f^{-1}(Cl(V)) \subset Cl(\text{IntCl}(f^{-1}(Cl(V)))) \subset f^{-1}(Cl(V)) \). Putting \(U = \text{IntCl}(f^{-1}(Cl(V))) \), \(U \) is an open set of \(X \), \(x \in U \) and \(f(U) \subset Cl(V) = \text{IntCl}(V) \). This shows that \(f \) is a C. □

REFERENCES

Department of Mathematics
The University of Ulsan
Ulsan 680–749, Korea

Department of Mathematics
Yatsushiro College of Technology
Yatsushiro, Kumamoto 866–8501, Japan

Teacher of ShungShin High School
Ulsan, Korea