SL(2, C)-REPRESENTATION VARIETIES OF PERIODIC LINKS

SANG YOUL LEE

Abstract In this paper, we characterize SL(2, C)-representations of an n-periodic link \(\hat{L} \) in terms of SL(2, C)-representations of its quotient link \(L \) and express the SL(2, C)-representation variety \(R(\hat{L}) \) of \(\hat{L} \) as the union of \(n \) affine algebraic subsets which have the same dimension. Also, we show that the dimension of \(R(\hat{L}) \) is bounded by the dimensions of affine algebraic subsets of the SL(2, C)-representation variety \(R(L) \) of its quotient link \(L \).

1. Introduction

Let \(L \) be a tame link in the 3-sphere \(S^3 \) and let \(G = \pi_1(S^3 - L) \) be the fundamental group of the complement \(S^3 - L \). Let \(R(G) \) denote the set of all representations of \(G \) in the 2 \times 2 \) special linear group SL(2, C) with entries in the field C of complex numbers. Suppose we fix a finite system of generators of \(G \), say \((g_1, \ldots, g_m)\). Then a representation \(\rho : G \to SL(2, C) \) is uniquely determined by specifying the \(m \)-tuple \((\rho(g_1), \ldots, \rho(g_m)) \). We define \(R(G) = \{(\rho(g_1), \ldots, \rho(g_m)) \in SL(2, C)^m \mid \rho \in R(G)\} \). Then \(R(G) \) carries with it the structure of an affine algebraic set in \(C^{4m} \). Throughout this paper we shall call it the SL(2, C)-representation variety of \(L \) and denote it by \(R(L) \). SL(2, C)-representation varieties of knots and links and their applications have

Received December 18, 2003
2000 Mathematics Subject Classification. 57M25
Key words and phrases. affine algebraic set, SL(2, C)-representation variety, dimension, periodic knot, periodic link.
This work was supported by grant No. (2000-1-10100-010-1) from the Basic Research Program of the Korea Science & Engineering Foundation.
been studied extensively by many mathematicians. For examples, see [2, 4, 5, 6, 7, 13, 14, 15] and therein.

A link \(\tilde{L} \) in \(S^3 \) is said to have period \(n \) (\(n \geq 2 \)) if there exists an \(n \)-periodic homeomorphism \(\phi \) from \(S^3 \) onto itself such that \(\tilde{L} \) is invariant under \(\phi \) and the fixed point set \(\tilde{K}_1 \) of the \(\mathbb{Z}_n \)-action induced by \(\phi \) is homeomorphic to a 1-sphere in \(S^3 \) disjoint from \(\tilde{L} \). By the positive solution of the Smith Conjecture [9], \(\tilde{K}_1 \) is unknotted and so the homeomorphism \(\phi \) is conjugate to one point compactification of the \(\mathbb{Z}_n \)-rotation about the z-axis in \(\mathbb{R}^3 \). Hence the quotient map \(q : S^3 \rightarrow S^3/\mathbb{Z}_n \) is an \(n \)-fold cyclic covering branched along the unknot \(q(\tilde{K}_1) = K_1 \). Set \(L = q(\tilde{L}) \). Then the link \(L_1 = K_1 \cup L \) in the orbit space \(S^3/\mathbb{Z}_n \approx S^3 \) is called the quotient link of \(\tilde{L} \). Some authors showed that a certain properties of periodic links can be characterized by their quotient links [3, 5, 8, 11, 12]. In this paper we are interested in studying the \(SL(2, \mathbb{C}) \)-representation variety \(\mathcal{R}(\tilde{L}) \) of an \(n \)-periodic link \(\tilde{L} \) in \(S^3 \) in terms of \(SL(2, \mathbb{C}) \)-representations of its quotient link \(L_1 \) in \(SL(2, \mathbb{C}) \).

The paper is organized as follows. In Section 2, we review a few basic terminologies concerning affine algebraic sets. In Section 3, we consider the \(SL(2, \mathbb{C}) \)-representation variety \(\mathcal{R}(L_1) \) of a link \(L_1 = K_1 \cup L \) with unknotted component \(K_1 \). In Section 4, we show that \(SL(2, \mathbb{C}) \)-representations of an \(n \)-periodic link \(\tilde{L} \) are completely determined by the \(SL(2, \mathbb{C}) \)-representations of its quotient link \(L_1 \) and express the \(SL(2, \mathbb{C}) \)-representation variety \(\mathcal{R}(\tilde{L}) \) of \(\tilde{L} \) as the union of \(n \) affine algebraic subsets which have the same dimension. As a consequence, we show that the dimension of \(\mathcal{R}(\tilde{L}) \) is bounded by the dimensions of algebraic subsets of the \(SL(2, \mathbb{C}) \)-representation variety \(\mathcal{R}(L_1) \) of its quotient link \(L_1 \).

2. Representation variety of knots and links

Let \(\mathbb{C} \) be the field of complex numbers. An (affine) algebraic set in the affine space \(\mathbb{C}^n (n \geq 1) \) is the set of zeros of some finite set of polynomials \(f_1, \cdots, f_s \) in \(\mathbb{C}[X_1, \cdots, X_n] \). We denote it by \(V(f_1, \cdots, f_s) \).

or simply by \mathcal{V}, i.e., $\mathcal{V}(f_1, \ldots, f_s) = \\
\{(a_1, \ldots, a_n) \in \mathbb{C}^n \mid f_1(a_1, \ldots, a_n) = 0, \forall i = 1, 2, \ldots, s\}$.

If \mathcal{U} is the ideal of $\mathbb{C}[X_1, \ldots, X_n]$ generated by f_1, \ldots, f_s, then the set of all zeros of f_i's is equal to the set of all zeros of every $g \in \mathcal{U}$ and so we will denote $\mathcal{V}(f_1, \ldots, f_s)$ also by $\mathcal{V}(\mathcal{U})$. A non-empty affine algebraic set is said to be irreducible if it cannot be expressed as the union of two proper algebraic subsets. An irreducible algebraic subset $\mathcal{V} = \mathcal{V}(f_1, \ldots, f_s)$ of \mathbb{C}^n is called an affine variety defined by f_1, \ldots, f_s.

Every affine algebraic set may be written canonically as a finite union of affine varieties, called its irreducible components. An affine algebraic set \mathcal{V} has a well-defined (complex) dimension, denoted by $\dim(\mathcal{V})$. If $\mathcal{V} \subset \mathbb{C}^m$ and $\mathcal{W} \subset \mathbb{C}^n$ are affine algebraic sets, a map $\phi: \mathcal{V} \rightarrow \mathcal{W}$ is said to be regular if it is the restriction of some map from \mathbb{C}^m to \mathbb{C}^n which is defined by n polynomials in m variables.

Let $M(2, \mathbb{C})$ be the set of all 2×2 matrices with entries in \mathbb{C}. Throughout this paper, we shall identify $M(2, \mathbb{C})$ with \mathbb{C}^4 by simply writing down the rows of each matrix one after the other and so, for example, $M(2, \mathbb{C})^m$ is identified with \mathbb{C}^{4m}. The general linear group $GL(2, \mathbb{C})$ is the group of all members of $M(2, \mathbb{C})$ with nonzero determinant and the special linear group $SL(2, \mathbb{C})$ is the subgroup of $GL(2, \mathbb{C})$ with determinant 1.

Let G be a finitely presented group. A homomorphism $\rho: G \rightarrow SL(2, \mathbb{C})$ is called a representation of G in $SL(2, \mathbb{C})$. Two representations ρ and ρ' are equivalent, denoted by $\rho \equiv \rho'$, if $\rho' = \Lambda \rho$, where Λ is an inner automorphism of $SL(2, \mathbb{C})$. Let $R(G)$ denote the set of all representations of G in $SL(2, \mathbb{C})$. Then it can be parametrized by points of an affine algebraic subset of \mathbb{C}^{4m} for some positive integer m as follows. Let $P = \langle x_1, \ldots, x_m \mid r_j(x_1, \ldots, x_m), j = 1, 2, \ldots, n \rangle$ be a group presentation of G. Define $R(G, P) = \\
\{(P) \in SL(2, \mathbb{C})^m \mid R_j(P) - I = O, j = 1, 2, \ldots, n\}$, where $R_j(P)(j = 1, 2, \ldots, n)$ denotes the matrix $r_j(A_1, \ldots, A_m)$ obtained from the relator $r_j(x_1, \ldots, x_m)$ by substituting A_i for x_i. I denotes the 2×2 identity matrix and O denotes the 2×2 zero matrix. Then $R(G, P)$ is an affine algebraic subset of \mathbb{C}^{4m}. For each point $P = (A_1, \ldots, A_m) \in R(G, P)$, we define a representation ρ_P.

$G \rightarrow \text{SL}(2, \mathbb{C})$ by $\rho_P(x_i) = A_i (1 \leq i \leq m)$ Then ρ_P becomes a representation of G in $\text{SL}(2, \mathbb{C})$. Conversely, for an arbitrary given representation $\rho : G \rightarrow \text{SL}(2, \mathbb{C})$, the point $P = (\rho(x_1), \ldots, \rho(x_m))$ is an element of $\mathcal{R}(G, \mathcal{P})$ such that $\rho_P = \rho$. Therefore there is a natural 1-1 correspondence between the points of $\mathcal{R}(G, \mathcal{P})$ and $\mathcal{R}(G)$. If Q is an another presentation of G, then there exists a canonical isomorphism $\phi : \mathcal{R}(G, \mathcal{P}) \rightarrow \mathcal{R}(G, \mathcal{Q})$ as affine algebraic sets. We shall identify points in $\mathcal{R}(G, \mathcal{P})$ with the corresponding representations. Although $\mathcal{R}(G; \mathcal{P})$ is not a variety in general, we call $\mathcal{R}(G, \mathcal{P})$ the $\text{SL}(2, \mathbb{C})$-representation variety of G associated to \mathcal{P}.

Now let $L = K_1 \cup \cdots \cup K_\mu$ be an oriented tame link in S^3 of μ components($\mu \geq 1$) and let $G = \pi_1(S^3 - L)$ be the link group of L, i.e., the fundamental group of the complement $S^3 - L$ with a finite presentation \mathcal{P}. Then in what follows the variety $\mathcal{R}(G, \mathcal{P})$ is called the $\text{SL}(2, \mathbb{C})$-representation variety of the link L associated to \mathcal{P} and denoted by $\mathcal{R}(L, \mathcal{P})$. Note that the isomorphism class $\mathcal{R}(L)$ of $\mathcal{R}(L, \mathcal{P})$ is an invariant of the link type L.

3. Representation variety of a link with one trivial component

Let $L_1 = K_1 \cup K_2 \cup \cdots \cup K_\mu$ be an oriented link in S^3 of μ components($\mu \geq 2$) such that K_1 is unknotted For each $2 \leq i \leq \mu$, let $\lambda_1 = \text{lkd}(K_1, K_i)$, the linking number of K_1 and K_i. Let $N_i(i = 1, \cdots, \mu)$ be a small open tubular neighborhood of K_i in S^3 whose boundary $\partial N_i = T_i$ is a torus in S^3. Let (m_i, l_i) be a meridian-longitude pair of T_i Then $\pi_1(T_i)$ is a free abelian group generated by m_i and l_i and it has a presentation $\pi_1(T_i) = \langle x_i, \xi_i : x_i \xi_i x_i^{-1} \xi_i^{-1} \rangle$, where x_i and ξ_i represent m_i and l_i, respectively This presentation is called a canonical presentation of $\pi_1(T_i)$.

For our simplicity, we assume that $\mu = 2$ and $\lambda_{12} \neq 0$. Applying an isotopy deformation if necessary, we can choose an oriented diagram $D = D_1 \cup D_2$ in \mathbb{R}^2 of the link $L_1 = K_1 \cup K_2$ which is of the form as shown in Figure 1, where $D_1(z = 1, 2)$ denotes a diagram representing the component K_1.
Using Wirtinger presentation and Tietz transformations if necessary, we obtain a deficiency one presentation P' of the group $G = \pi_1(S^3 - L_1)$ which contains a canonical presentation of $\pi_1(\mathbb{T}_1)$, which is of the form (cf. [1])

$$P' = \langle z_1, \ldots, z_a, w_1, \ldots, w_b, \xi_1 \mid r'_1, s' \rangle,$$

$$r'_1(1 \leq i \leq a - 1), r'_2(1 \leq i \leq b - 1),$$

where the generators z_i and w_j correspond to the i-th and j-th branch of the component D_1 and D_2 of D, respectively, and ξ_1 represents a longitude l'_1 of D_1 and

$$r' = z_1 \xi_1 z_1^{-1} \xi_1^{-1},$$

$$s' = \xi_1 (w_{j_1+1} w_{j_2+1} \ldots w_{j_r+1} w_{j_{r+1}}^{-1} \ldots w_{j_{a-1}}^{-1} w_{b}^{-1})^{-1}.$$

The relators r'_1 and r'_2 correspond to the crossings in D. The relators r'_4 correspond to the crossings incident to the component D_1, which have the form (cf. Figure 1)
The relators \(r'^j \) correspond to the self crossings of the component \(D_2 \), which have the form:

\[
 r'^j_{a-2} = w_{j_{a-2}} w_{j_{a-2}}^{-1} z_{j_{a-2}^{-1}}, \quad r'^j_{a-1} = w_{j_{a-1}} w_{j_{a-1}}^{-1} z_{j_{a-1}^{-1}},
\]

\[
 r'^j_j = w_j z_j w_j^{-1} z_j^{-1}, \quad \cdots \quad r'^j_{jr} = w_j z_j w_j^{-1} z_j^{-1},
\]

\[
 r'^j_{jr+1} = z_1 w_{jr+1} z_1^{-1} w_{jr+1}^{-1}, \quad \cdots \quad r'^j_{jr+1} = z_1 w_{jr+1} z_1^{-1} w_{jr+1}^{-1}.
\]

where \(w^j_q \) is a certain generator \(w_j (1 \leq j \leq b) \) and \(\epsilon_q = \pm 1 \).

We modify the presentation \(\mathcal{P}' \) of \(G \) as follows. Since \(H_1 (S^3 - L_1) = G_1 / [G, G] \) is generated by \(z_1, w_1 \), we have that \(z_i \equiv z_1 \pmod{[G, G]}, i = 2, \cdots, a \), and \(w_i \equiv w_1 \pmod{[G, G]}, j = 2, \cdots, b \), and \(\xi_1 \equiv w_1^{a-2r} \pmod{[G, G]} \). Introduce new generators \(x_i = z_i, x_i = z_i z_1^{-1} (2 \leq i \leq a), y_i = w_i, y_i = w_i y_i^{-1} (2 \leq i \leq b) \), and \(\ell_i = \xi_1 y_1^{-1} \). Using these generators, we obtain a new deficiency one presentation \(\mathcal{P} \) of \(G \)

\[
 \mathcal{P} = \langle x_1, \cdots, x_a, y_1, \cdots, y_b, \ell_1 \mid r, s, \quad r_{1i} (1 \leq i \leq a-1), r_{2j} (1 \leq j \leq b-1) \rangle,
\]

where \(r, s, r_{1i}, \) and \(r_{2j} \) are obtained from \(r', s', r'_1, \) and \(r'_2 \) by rewriting in terms of the new generators \(x_i, y_i, \) and \(\ell_i \). Precisely,
Now let $\mathcal{R}(L_1, \mathcal{P})$ be the $\text{SL}(2, \mathbb{C})$-representation variety of L_1 associated to the presentation \mathcal{P} in (1)

Let $A_i = \begin{pmatrix} X_{4(i-1)+1} & X_{4(i-1)+2} \\ X_{4(i-1)+3} & X_{4i} \end{pmatrix}$, $B_j = \begin{pmatrix} X_{4(a+j-1)+1} & X_{4(a+j-1)+2} \\ X_{4(a+j-1)+3} & X_{4(a+j)} \end{pmatrix}$, $C_1 = \begin{pmatrix} X_{4(a+b)+1} & X_{4(a+b)+2} \\ X_{4(a+b)+3} & X_{4(a+b+1)} \end{pmatrix} \in \text{M}(2, \mathbb{C})$ for $i = 1, 2, \ldots, a$, $j = 1, 2, \ldots, b$ A point $P = (A_1, A_2, \ldots, A_a, B_1, \ldots, B_b, C_1) \in \text{M}(2, \mathbb{C})^{a+b+1}$ lies in $\mathcal{R}(L_1, \mathcal{P})$, i.e., the map defined by $x_i \mapsto A_i(1 \leq i \leq a), y_j \mapsto B_j(1 \leq j \leq b), \ell_1 \mapsto C_1$ is a representation of G in $\text{SL}(2, \mathbb{C})$ if and
only if

(3) \(\det(A_1) = 1 \)
(4) \(\det(A_i) = 1, \det(B_j) = 1, \det(C_i) = 1, 2 \leq i \leq a, 1 \leq j \leq b, \)
(5) \(R(P) - I = O, S(P) - I = O, R_{1i}(P) - I = O, 1 \leq i \leq a - 1, \)
(6) \(R_{2j}(P) - I = O, 1 \leq j \leq b - 1. \)

On the other hand, a presentation \(\mathcal{P}_* \) of \(G_* = \pi_1(S^3 - K_2) \) is obtained from \(\mathcal{P} \) by adding one relator \(x_1 = 1 \). Let \(\mathcal{R}(K_2, \mathcal{P}_*) \) be the \(\text{SL}(2, \mathbb{C}) \)-representation variety of \(K_2 \) associated to the presentation \(\mathcal{P}_* \).

Proposition 3.1. \(\mathcal{R}(K_2, \mathcal{P}_*) \) is an affine algebraic subset of \(\mathcal{R}(L_1, \mathcal{P}) \).

Proof. A point \(P = (A_1, \ldots, A_a, B_1, \ldots, B_b, C_1) \in M(2, \mathbb{C})^{a+b+1} \)

lies in \(\mathcal{R}(K_2, \mathcal{P}_*) \) if and only if it satisfies the equations (3), (4), (5), (6) and the equation \(A_1 = I \), i.e.,

(7) \(\mathcal{R}(K_2, \mathcal{P}_*) = \{(A_1, A_2, \ldots, A_a, B_1, \ldots, B_b, C_1) \in \mathcal{R}(L_1, \mathcal{P}) \mid A_1 = I \} \)

This implies that \(\mathcal{R}(K_2, \mathcal{P}_*) \) is an affine algebraic set defined by the defining polynomials of \(\mathcal{R}(L_1, \mathcal{P}) \), together with the polynomials \(X_1 - 1 = 0, X_2 = 0, X_3 = 0 \) and \(X_4 - 1 = 0 \). \(\square \)

Let \(\mathcal{U}(\mathcal{P}) \) be the ideal of \(\mathbb{C}[X_1, X_2, X_3, X_4, X_5, \ldots, X_{4(a+b+1)}] \) generated by the polynomials in (3) and (4) and the entries of the left hand side of the matrix equations in (5) and (6). Note that \(\mathcal{R}(L_1, \mathcal{P}) = V(\mathcal{U}(\mathcal{P})) \). Let \(\pi_4 : M(2, \mathbb{C})^{a+b+1} \to M(2, \mathbb{C})^{a+b} \) be the projection map which sends \((A_1, A_2, \ldots, A_a, B_1, \ldots, B_b, C_1) \) to \((A_2, \ldots, A_a, B_1, \ldots, B_b, C_1) \) and let \(\mathcal{U}_4(\mathcal{P}) = \mathcal{U}(\mathcal{P}) \cap \mathbb{C}[X_5, \ldots, X_{4(a+b+1)}] \) be the 4-th elimination ideal of \(\mathcal{U}(\mathcal{P}) \). Then it is well known that the projection \(\pi_4(\mathcal{R}(L_1, \mathcal{P})) \) is given by

\[
\pi_4(\mathcal{R}(L_1, \mathcal{P})) = \{(A_2, \ldots, A_a, B_1, \ldots, B_b, C_1) \in V(\mathcal{U}_4(\mathcal{P})) \mid \exists A_1 \in M(2, \mathbb{C}) \text{ s.t. } (A_1, A_2, \ldots, A_a, B_1, \ldots, B_b, C_1) \in \mathcal{R}(L_1, \mathcal{P})\}
\]

and \(V(\mathcal{U}_4(\mathcal{P})) = \pi_4(\mathcal{R}(L_1, \mathcal{P})) \), the Zariski closure of \(\pi_4(\mathcal{R}(L_1, \mathcal{P})) \) in \(\mathbb{C}^{4(a+b)} \).
Let n be an integer ≥ 2 and set $\zeta = \exp\left(\frac{2\pi \sqrt{-1}}{n}\right)$, a primitive n-th root of 1. Let $\mathcal{V}(L_1, \mathcal{P})$ be the affine algebraic subset of $\mathbb{C}^{4(a+b+1)}$ consisting of all points $P = (A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1) \in M(2, \mathbb{C})^{a+b+1}$ satisfying all equations in (4), (5) and (6). For each $k = 0, 1, \cdots, n-1$, let $D^\alpha_k = \{M \in M(2, \mathbb{C}) \mid M^n = I, \det(M) = \zeta^k\}$. Then we define $V_k(L_1, \mathcal{P}), 0 \leq k \leq n-1$, to be the subset of $\mathbb{C}^{4(a+b+1)}$ given by

$$V_k(L_1, \mathcal{P}) = \mathcal{V}(L_1, \mathcal{P}) \cap (D^\alpha_k \times V(U_4(\mathcal{P})))$$

and define

$$R_n(L_1, \mathcal{P}) = \bigcup_{k=0}^{n-1} V_k(L_1, \mathcal{P}).$$

In particular, $V_0(L_1, \mathcal{P}) = \{(A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1) \in R(L_1, \mathcal{P}) \mid A_1^n = I\}$

Proposition 3.2. (1) For each $k = 0, 1, \cdots, n-1$, $V_k(L_1, \mathcal{P})$ is an affine algebraic subset of $\mathbb{C}^{4(a+b+1)}$ and so is $R_n(L_1, \mathcal{P})$.

(2) If $0 \leq i \neq j \leq n-1$, then $V_i(L_1, \mathcal{P}) \cap V_j(L_1, \mathcal{P}) = \emptyset$.

(3) For each $k = 1, \cdots, n-1$, $V_k(L_1, \mathcal{P})$ is isomorphic to $V_0(L_1, \mathcal{P})$ as affine algebraic sets.

(4) $R(K_2, \mathcal{P}) \subset V_0(L_1, \mathcal{P}) \subset R(L_1, \mathcal{P})$ and $R_n(L_1, \mathcal{P}) \cap R_n(L_1, \mathcal{P}) = V_0(L_1, \mathcal{P})$.

Proof. Since $V(L_1, \mathcal{P}), D^\alpha_k$ and $V(U_4(\mathcal{P}))$ are all affine algebraic sets, (1) follows immediately. (2) follows from the fact that $D^\alpha_i \cap D^\alpha_j = \emptyset$ if $i \neq j$.

(3) We consider the map $\phi: V_0(L_1, \mathcal{P}) \to V_k(L_1, \mathcal{P})$ defined by

$$\phi((A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1)) = (\zeta^k A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1)$$

for all $(A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1) \in V_0(L_1, \mathcal{P})$. By the definition of $V_0(L_1, \mathcal{P})$, it follows that $P = (A_2, \cdots, A_a, B_1, \cdots, B_b, C_1) \in V(U_4(\mathcal{P}))$, det$(\zeta^k A_1) = \zeta^k \det(A_1) = \zeta^k$ and $(\zeta^k A_1)^n = \zeta^{nk} A_1^n = A_1^n = I$. Notice that either the relators r, s, r_1, and r_2, in (2) contain
both the generator x_1 and its inverse x_1^{-1} exactly once or they do not contain both x_1 and x_1^{-1} at all. This gives that

$$R(\zeta^{\frac{1}{2}} A_1, P) = R(A_1, P) = I, S(\zeta^{\frac{1}{2}} A_1, P) = S(A_1, P) = I,$$

$$R_{12}(\zeta^{\frac{1}{2}} A_1, P) = R_{11}(A_1, P) = I, R_{23}(\zeta^{\frac{1}{2}} A_1, P) = R_{22}(A_1, P) = I.$$

Hence $(\zeta^{\frac{1}{2}} A_1, P) \in \mathcal{V}_k(L_1, \mathcal{P})$. It is clear that ϕ is the restriction of a polynomial map from $\mathbb{C}^{4(a+b+1)}$ to itself. Thus ϕ is a well-defined regular mapping. Now let $\psi : \mathcal{V}_k(L_1, \mathcal{P}) \to \mathcal{V}_0(L_1, \mathcal{P})$ be a map defined by

$$\psi((A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1)) = (\zeta^{-\frac{1}{2}} A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1)$$

for all $(A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1) \in \mathcal{V}_k(L_1, \mathcal{P})$. By similar argument above, ψ is a regular mapping. It is easy to check that $\psi \circ \phi = \text{id}_{\mathcal{V}_k(L_1, \mathcal{P})}$ and $\phi \circ \psi = \text{id}_{\mathcal{V}_k(L_1, \mathcal{P})}$. Therefore ϕ is an isomorphism.

(4) It follows from (7) and (8) shows that $\mathcal{V}(K_2, \mathcal{P}_*) \subset \mathcal{V}_0(L_1, \mathcal{P})$.

By definition, $\mathcal{V}_0(L_1, \mathcal{P}) \subset \mathcal{V}(L_1, \mathcal{P}) \cap \mathcal{V}_n(L_1, \mathcal{P})$. Now let

$$P = (A_1, A_2, \cdots, A_a, B_1, \cdots, B_b, C_1) \in \mathcal{V}(L_1, \mathcal{P}) \cap \mathcal{V}_n(L_1, \mathcal{P}).$$

Then P represents a representation of G into $\text{SL}(2, \mathbb{C})$ and so $P \in \mathcal{V}(L_1, \mathcal{P})$ and $\det(A_1) = 1$. Since $P \in \mathcal{V}_n(L_1, \mathcal{P})$, $A_1 \in D^+_k$ for some k. By (2), $\mathcal{V}_n(L_1, \mathcal{P}) = \bigcup_{k=0}^{n-1} \mathcal{V}_k(L_1, \mathcal{P})$ and hence $P \in \mathcal{V}_0(L_1, \mathcal{P})$. This completes the proof. \qed

4. Representation variety of an n-periodic link

Let $L_1 = K_1 \cup K_2$ be an oriented link in S^3 with 2 components such that K_1 is unknotted. Let μ be the greatest common divisor of n and λ_{12}. For any integer $n \geq 2$, let $\pi : S^3 \to S^3$ be the n-fold cyclic cover branched along K_1. Then K_2 is covered by μ knots $\bar{K}_1, \cdots, \bar{K}_\mu$ in S^3. We give orientations to $\bar{K}_1, \cdots, \bar{K}_\mu$ inherited from K_2. Then the oriented link $\bar{L} = \pi^{-1}(K_2) = \bar{K}_1 \cup \cdots \cup \bar{K}_\mu$ is the n-periodic link in S^3 with L as its quotient link. Note that every periodic links arises in this way.
Let $\tilde{G} = \pi_1(S^3 - \tilde{L})$ be the link group of \tilde{L}. Then from the choice of the generators in the presentation P of $G = \pi_1(S^3 - L)$ as given in (1), the group \tilde{G} has a presentation \tilde{P} of the form (cf. [11])

$$\tilde{P} = \langle x_{ik}, y_{jk}, z_k \big| 1 \leq i \leq a - 1, 1 \leq j \leq b, 1 \leq k \leq n \rangle \big| r_k, s_k, r_{1i}^k, r_{2j}^k \big| 1 \leq i \leq a - 1, 1 \leq j \leq b - 1, 1 \leq k \leq n \rangle.$$ \hspace{1cm} (9)

where

$$x_{ik} = x_i^{-1} x_{i+1}^{-1} x_i^{(k-1)}, \quad y_{jk} = x_j^{-1} y_j x_j^{(k-1)}, \quad z_k = x_i^{-1} x_i^{(k-1)},$$

$$x_i^n = 1, \quad x_i^k \neq 1 \text{ for all } k = 1, \ldots, n - 1,$$

and

$$r_k = x_i^{-1} x_i^{(k-1)} s_k = x_i^{-1} x_i^{(k-1)},$$

$$r_{1i}^k = x_i^{-1} r_{1i} x_i^{(k-1)}, \quad r_{2j}^k = x_i^{-1} r_{2j} x_i^{(k-1)},$$

or equivalently, for each $k = 1, \ldots, n$,

$$r_k = z_{k+1}^{\lambda_{12}} y_{j+1}^{\lambda_{12}} y_{j+1}^{\lambda_{12}} z_{k}^{-1},$$

$$s_k = z_k y_{j+1}^{\lambda_{12}} y_{j+1}^{\lambda_{12}} y_{j+1}^{\lambda_{12}} y_{j+1}^{\lambda_{12}} \cdots,$$

$$r_{1i}^k = y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} x_{k}^{-1},$$

$$r_{12}^k = y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} x_{2k}^{-1},$$

$$r_{1r}^k = y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} x_{r}^{-1},$$

$$r_{1r+1}^k = y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} x_{r+1}^{-1},$$

$$r_{2j}^k = y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} x_{2j+1}^{-1},$$

$$r_{1a}^{-1} = y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1},$$

and

$$r_{2j+1}^k = y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} y_{j+1}^{-1} x_{2j+1}^{-1}.$$ \hspace{1cm} (12)
\[
\begin{align*}
\tau_{2j}^k &= y_{2j}y_1y_{2j+1}^{-1}y_{2j+1}^{-1}, \\
\tau_{2j+1}^k &= y_{2j+1}y_1y_{2j+1}^{-1}y_{2j+1}^{-1}.
\end{align*}
\]

(13)

\[
\begin{align*}
\tau_{2j_a-1}^k &= y_{2j_a-1}y_1y_{2j_a-1}^{-1}y_{2j_a-1}^{-1} \\
\tau_{2q}^k &= (w_q)^{\epsilon(q)}y_q y_1 y_q^{-1} y_q^{-1}.
\end{align*}
\]

We shall introduce some notations for the following theorem. Let
\(P_1 = (M_{11}, \ldots, M_{m1}), P_2 = (M_{12}, \ldots, M_{m2}), \ldots, P_n = (M_{1n}, \ldots, M_{mn}) \) be \(n \) points in \(M(2, \mathbb{C})^m \), where \(m \) is an integer \(\geq 1 \) and \(M_{ij} \in M(2, \mathbb{C}) \). Then \((P_1, P_2, \ldots, P_n) \) denotes the point \((M_{11}, \ldots, M_{m1}, M_{12}, \ldots, M_{m2}, \ldots, M_{1n}, \ldots, M_{mn}) \) in \(M(2, \mathbb{C})^m \). For a matrix \(N \in M(2, \mathbb{C}) \) and an integer \(k, N^k P_j N^{-k} (1 \leq j \leq n) \) denotes the point \((N^k M_{1j} N^{-k}, \ldots, N^k M_{mj} N^{-k}) \) in \(M(2, \mathbb{C})^m \).

Theorem 4.1. Let \(L_1 = K_1 \cup K_2 \) be an oriented link in \(S^3 \) such that \(K_1 \) is unknotted and \(\lambda_{12} =lk(K_1, K_2) \neq 0 \) and let \(\mathcal{P} \) be the presentation of \(G = \pi_1(S^3 - L_1) \) as given in (1). For any integer \(n \geq 2 \), let \(\bar{L} \) be an \(n \)-periodic link in \(S^3 \) with the quotient link \(L_1 \) and let \(\mathcal{R}(\bar{L}, \mathcal{P}) \) be the \(SL(2, \mathbb{C}) \)-representation variety of \(\bar{L} \) associated to the presentation \(\mathcal{P} \) in (9). Then a point \(P = (P_1, P_2, \ldots, P_n) \in M(2, \mathbb{C})^{(a+b)n} \) lies in \(\mathcal{R}(\bar{L}, \mathcal{P}) \) if and only if \(P_1 \in V(U_1(\mathcal{P})) \) and for each \(k = 2, \ldots, n, P_k = M^{-k} P_1 M^{-(k-1)} \) for some matrix \(M \in GL(2, \mathbb{C}) \) such that \((M, P_1) \in \mathcal{R}_n(L_1, \mathcal{P}) \).

Proof. Let

\[
\begin{align*}
P_1 &= (A_{11}, \ldots, A_{a-11}, B_{11}, \ldots, B_{b1}, C_1), \\
P_2 &= (A_{12}, \ldots, A_{a-12}, B_{12}, \ldots, B_{b2}, C_2), \\
& \vdots \\
P_n &= (A_{1n}, \ldots, A_{a-1n}, B_{1n}, \ldots, B_{bn}, C_n).
\end{align*}
\]

Suppose that \(P = (P_1, P_2, \ldots, P_n) \) is a point of \(\mathcal{R}(\bar{L}, \mathcal{P}) \), i.e., the mapping defined by \(x_{ik} \mapsto A_{ik}, y_{jk} \mapsto B_{jk}, z_k \mapsto C_k \) is a representation
of G in $\text{SL}(2, \mathbb{C})$. Then

\begin{equation}
\mathsf{det}(A_{ik}) = 1, \mathsf{det}(B_{jk}) = 1, \mathsf{det}(C_k) = 1,
\end{equation}

\begin{equation}
R_k(P) - I = O, \quad S_k(P) - I = O,
\end{equation}

\begin{equation}
R_{k_1}^{k_2}(P) - I = O, \quad R_{k_2}^{k_1}(P) - I = O
\end{equation}

for all $1 \leq i \leq a - 1, 1 \leq j \leq b$ and $1 \leq k \leq n$.

By (10), it follows that for all i, j and k, $A_{ik} = M^{k-1}A_{i1}M^{-(k-1)}, B_{jk} = M^{k-1}B_{j1}M^{-(k-1)}, C_k = M^{k-1}C_1M^{-(k-1)}$ for some matrix $M \in \text{GL}(2, \mathbb{C})$ such that $M^n = I$, i.e., for each $k = 1, \cdots, n$,

\begin{equation}
P_k = M^{k-1}P_1M^{-(k-1)} = MP_{k-1}M^{-1}.
\end{equation}

From (12) and (13), it follows that for each $k = 1, \cdots, n$, the relators r_k, s_k, r_1^k, and r_2^k in \mathcal{P} consist of the generators $x_{ik}, x_{ik+1}, y_{jk}, y_{jk+1}, z_k$ or z_{k+1}, where $1 \leq i \leq a - 1$ and $1 \leq j \leq b$. So all entries of the matrices $R_k(P_i), S_k(P_i), R_{k_1}^{k_2}(P)$ and $R_{k_2}^{k_1}(P)$ are polynomials with indeterminants which are the entries of the matrices $A_{ik}, A_{ik+1}, B_{jk}, B_{jk+1}, C_k$ and C_{k+1}.

Hence we obtain that for each $k = 1, \cdots, n$,

\begin{equation}
R_k(P) = r_k(P_1, P_2, \cdots, P_n) = r_k(P_k, P_{k+1}),
\end{equation}

\begin{equation}
S_k(P) = s_k(P_1, P_2, \cdots, P_n) = s_k(P_k, P_{k+1}),
\end{equation}

\begin{equation}
R_{k_1}^{k_2}(P) = r_{k_1}^{k_2}(P_1, P_2, \cdots, P_n) = r_{k_1}^{k_2}(P_k, P_{k+1}),
\end{equation}

\begin{equation}
R_{k_2}^{k_1}(P) = r_{k_2}^{k_1}(P_1, P_2, \cdots, P_n) = r_{k_2}^{k_1}(P_k, P_{k+1})
\end{equation}

By (10), we have that $x_{i1} = x_{i+1}, y_{j1} = y_j, z_1 = \ell_1$, where x_{i+1}, y_j and ℓ_1 are the generators of the presentation \mathcal{P} in (1) and so it follows from (2), (12) and (13) that

\begin{equation}
r_1(P_1, P_2) = r_1(P_1, MP_1M^{-1}) = r(M, P_1),
\end{equation}

\begin{equation}
s_1(P_1, P_2) = s_1(P_1, MP_1M^{-1}) = s(M, P_1),
\end{equation}

\begin{equation}
r_1^{k_1}(P_1, P_2) = r_1^{k_1}(P_1, MP_1M^{-1}) = r_{1k}(M, P_1),
\end{equation}

\begin{equation}
r_2^{k_1}(P_1, P_2) = r_2^{k_1}(P_1, MP_1M^{-1}) = r_{2k}(M, P_1),
\end{equation}

where $r, s, r_1, \text{ and } r_2$ are the relators of the presentation \mathcal{P} of $G = \pi_1(S^3 - L)$ in (1). By (16), (17) and (19), it follows that $r(M, P_1) = I, s(M, P_1) = I, r_{11}(M, P_1) = I, r_{22}(M, P_1) = I$ and hence $P_1 \in V(U_4(P))$ and $(M, P_1) \in R_n(L_1, P)$.
Conversely, let $P = (F_1, MP_1M^{-1}, \ldots, M^{n-1}P_1M^{-(n-1)})$ be a point of $M(2, \mathbb{C})^{a+b}$ satisfying the conditions. Since $P_1 \in V(\mathcal{U}_4(P))$ and the ideal $\mathcal{U}_4(P)$ contains all polynomials in $M(2, \mathbb{C})^{a+b}$ and so $M^{k-1}P_1M^{-(k-1)}$ in $SL(2, \mathbb{C})^{a+b}$ for all $k = 2, \ldots, n$ Hence $P \in SL(2, \mathbb{C})^{a+b}$. Since $(M, P_1) \in R_n(L_1, P)$, it follows from (19) and (20) that $R_1(P) = I, S_1(P) = I, R_{11}(P) = I, R_{12}(P) = I$. Then by (12), (13) and (19), we obtain that for each $k = 2, \ldots, n$,

$$R_k(P) = \tau_k(P_k, P_{k+1})$$
$$= \tau_k(M^{k-1}P_1M^{-(k-1)}, M^{k-1}P_2M^{-(k-1)})$$
$$= M^{k-1}R_1(P_1, P_2)M^{-(k-1)}$$
$$= M^{k-1}R_1(P)M^{-(k-1)}$$
$$= I.$$

Similarly, $S_k(P) = I, R_{11}^k(P) = I$ and $R_{2j}^k(P) = I$ for all i, j and $k = 2, \ldots, n$ Therefore $P \in R(\tilde{L}, \tilde{P})$. This completes the proof. □

Let $\eta : \tilde{G} \to SL(2, \mathbb{C})$ be a representation of \tilde{G} in $SL(2, \mathbb{C})$ and let $\Theta : \tilde{G} \to \tilde{G}$ denote the n-periodic automorphism of \tilde{G} defined by $\Theta(x_{ik+1}, y_{jk}, z_k) = y_{jk+1}$ and $\Theta(z_k) = z_{k+1}$. Then it is immediate that $\eta \circ \Theta$ is also a representation of \tilde{G} in $SL(2, \mathbb{C})$.

Theorem 4.2. Let $\mathcal{F}(\tilde{L}, \tilde{P})$ denote the set of all points $P = (P_1, P_2, \ldots, P_n)$ in $R(\tilde{L}, \tilde{P})$ such that $\eta_P \circ \Theta = \eta_{\tilde{P}}$, where η_P denotes the representation of \tilde{G} corresponding to the point P. Then

1. $\mathcal{F}(\tilde{L}, \tilde{P})$ is an affine algebraic subset of $R(\tilde{L}, \tilde{P})$

2. $\mathcal{F}(\tilde{L}, \tilde{P}) = \{(P_1, P_1, \ldots, P_n) \in R(\tilde{L}, \tilde{P}) | \exists M \in GL(2, \mathbb{C}) \text{ s.t.} (M, P_1) \in R_n(L_1, P), MP_1 = P_1M\}$.

Proof. (1) Let $P = (P_1, P_2, \ldots, P_n)$ be a point of $\mathcal{F}(\tilde{L}, \tilde{P})$, where P_1, P_2, \ldots, P_n are points of $M(2, \mathbb{C})^{a+b}$ as given in (14). Since $P = (P_1, P_2, \ldots, P_n)$ lies in $R(\tilde{L}, \tilde{P})$, P satisfies the matrix equations in (15) and (17). It is clear that $\eta_P \circ \Theta = \eta_{\tilde{P}}$ if and only if

$$A_{ik+1} - A_{ik} = O, B_{jk+1} - B_{jk} = O, C_{k+1} - C_k = O$$

(21)
for all $1 \leq i \leq a-1, 1 \leq j \leq b$ and $k = 1, 2, \cdots, n$. This shows that P is a zero of the polynomials in (15) and the polynomials which are the entries of the left hand side matrix of the equations in (17) and (21).

(2) Let $P = (P_1, P_2, \cdots, P_n)$ be a point of $\mathcal{R}(\bar{L}, \bar{P})$ such that $\eta_P \circ \Theta = \eta_P$, where P_1, P_2, \cdots, P_n are points of $M(2, \mathbb{C})^{a+b}$ as given in (14). By Theorem 4.1, $P_1 \in \mathcal{U}_d(P)$ and for each $k = 2, 3, \cdots, n$, $P_k = M^{k-1}P_1M^{-(k-1)}$ for some matrix $M \in \text{GL}(2, \mathbb{C})$. Since $\eta_P \circ \Theta = \eta_P$, it follows that $A_k, B_{jk+1} = B_{jk}, C_{k+1} = C_k$ and so $MA_kM^{-1} = A_k, MB_{jk}M^{-1} = B_{jk}, MC_kM^{-1} = C_k$ for all $k = 1, 2, \cdots, n-1$. Therefore $P_1 = MP_1M^{-1}$. Conversely, if $P = (P_1, P_2, \cdots, P_n)$ is a point of $\mathcal{R}(\bar{L}, \bar{P})$ such that $P_1 = P_2 = \cdots = P_n$, then it is clear that the corresponding representation η_P satisfies that $\eta_P \circ \Theta = \eta_P$. This completes the proof.

Let n be an integer ≥ 2 and set $\zeta = \exp\left(\frac{2\pi \sqrt{-1}}{n}\right)$. For each $k = 0, 1, \cdots, n-1$, we define $\mathcal{R}_k(\bar{L}, \bar{P})$ to be the subset of $\mathbb{C}^{4n(a+b)}$ given by

$$\{(P, MP^{-1}M^{-1}, \cdots, M^{n-1}P^{-1}M^{-(n-1)}) \in \mathcal{R}(\bar{L}, \bar{P}) \mid \det(M) = \zeta^k\}$$

and define $\phi_k \colon \mathcal{V}_k(L_1, P) \rightarrow M(2, \mathbb{C})^{n(a+b)}(= \mathbb{C}^{4n(a+b)})$ to be the mapping given by

$$\phi_k((M, P)) = (P, MP^{-1}M^{-1}, \cdots, M^{n-1}P^{-1}M^{-(n-1)})$$

for all $(M, P) \in \mathcal{V}_k(L_1, P)$

Lemma 4.3

(1) For each $k = 0, 1, \cdots, n-1$, ϕ_k is a regular map from $\mathcal{V}_k(L_1, P)$ onto $\mathcal{R}_k(\bar{L}, \bar{P})$, i.e., $\phi_k(\mathcal{V}_k(L_1, P)) = \mathcal{R}_k(\bar{L}, \bar{P})$

(2) $\mathcal{R}(\bar{L}, \bar{P}) = \bigcup_{k=0}^{n-1} \mathcal{R}_k(\bar{L}, \bar{P})$

(3) $\phi_0(\mathcal{R}(K_2, \mathcal{P})) \subset \mathcal{F}(\bar{L}, \bar{P}) \subset \bigcap_{k=0}^{n-1} \mathcal{R}_k(\bar{L}, \bar{P})$.

Proof. (1) Let \(M = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix} \), \(P = (M_2, \ldots, M_{a+b}) \in M(2, \mathbb{C})^{a+b-1} \),
where \(M_i = \begin{pmatrix} X_{4(i-1)+1} & X_{4(i-1)+2} \\ X_{4(i-1)+3} & X_4 \end{pmatrix} \) for each \(i = 2, \ldots, a+b \).

Suppose that \((M, P) \in \mathcal{V}_k(L_1, \mathcal{P})\). By Theorem 4.1, \(\phi_k((M, P)) = (P, MPM^{-1}, \ldots, M^{n-1}PM^{-(n-1)}) \in \mathcal{R} (\hat{L}, \hat{\mathcal{P}}) \). Since \(\det(M) = \zeta^k \), it follows that \(\phi_k((M, P)) \in \mathcal{R}_k (\hat{L}, \hat{\mathcal{P}}) \). It is easy to see that \(\phi_k(\mathcal{V}_k(L_1, \mathcal{P})) = \mathcal{R}_k (\hat{L}, \hat{\mathcal{P}}) \).

Now since \(M^{-1} = \zeta^{-k} \begin{pmatrix} X_4 & -X_2 \\ -X_3 & X_1 \end{pmatrix} \), we have the following equations: for each \(1 \leq m \leq n-1, 2 \leq t \leq a+b \), \(M^m M_t M^{-m} = \)
\[
\frac{1}{\zeta^{km}} \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}^m \begin{pmatrix} X_{4(i-1)+1} & X_{4(i-1)+2} \\ X_{4(i-1)+3} & X_4 \end{pmatrix} \begin{pmatrix} X_4 & -X_2 \\ -X_3 & X_1 \end{pmatrix}^m.
\]

This shows that all entries of the matrix \(M^m M_t M^{-m} \) are polynomials in \(X_1, X_2, X_3, X_4, X_{4(i-1)+1}, X_{4(i-1)+2}, X_{4(i-1)+3} \) and \(X_4 \). Therefore each \(\phi_k \) is a regular map.

(2) Let \(P = (P_1, \ldots, P_n) \) be a point of \(\mathcal{R}(\hat{L}, \hat{\mathcal{P}}) \). By Theorem 4.1, \(P_1 \in \mathcal{V}(\mathcal{U}_4(\mathcal{P})) \) and there exists a matrix \(M \in \text{GL}(2, \mathbb{C}) \) such that \(M^n = I \) and \(P = (P_1, MPM^{-1}, \ldots, M^{n-1}PM^{-(n-1)}) \). Since \(M^n = I, \det(M)^n = 1 \). So \(\det(M) \) must be a \(n \)-th root of unity, i.e., \(\det(M) = \zeta^k \) for some \(k \) \((0 \leq k \leq n-1) \). Thus \(P \in \mathcal{R}_k (\hat{L}, \hat{\mathcal{P}}) \) for some \(k \) \((0 \leq k \leq n-1) \).

(3) Let \(P = (A_1, A_2, \ldots, A_a, B_1, \ldots, B_b, C_1) \) be a point of \(\mathcal{R}(K_2, \mathcal{P}_*) \). By (7), \(A_1 = I \). Set \(P_1 = \pi_4(P) = (A_2, \ldots, A_a, B_1, \ldots, B_b, C_1) \). Note that \(\phi_0(P) = (P_1, \ldots, P_1) \). By (4) of Proposition 3.2, \(P = (I, P_1) \in \mathcal{V}_0(L_1, \mathcal{P}) \subset \mathcal{R}_n (L_1, \mathcal{P}) \). By (2) of Theorem 4.2, \(\phi_0(P) \in \mathcal{F}(\hat{L}, \hat{\mathcal{P}}) \).

Now let \(P = (P_1, \ldots, P_1) \) be a point of \(\mathcal{F}(\hat{L}, \hat{\mathcal{P}}) \). By (2) of Theorem 4.2, there exists a matrix \(M \in \text{GL}(2, \mathbb{C}) \) such that \((M, P_1) \in \mathcal{V}_n(L_1, \mathcal{P}) \subset \mathcal{R}_n (L_1, \mathcal{P}) \) and \(MP_1 \equiv P_1 M \) for some \(0 \leq j \leq n-1 \). For each \(k = 0, 1, \ldots, n-1 \), let \(M_k = \zeta^{k+1} M \). Then \(\det(M_k) = \zeta^k \). Since \(\mathcal{F}(\hat{L}, \hat{\mathcal{P}}) \subset \mathcal{R}(\hat{L}, \hat{\mathcal{P}}) \), by Theorem 4.2 \(P_1 \in \mathcal{V}(\mathcal{U}_4(\mathcal{P})) \). It follows from (2) that \((M_k, P_1) \) satisfies the matrix equations in (4), (5), and (6) and so \((M_k, P_1) \in \mathcal{V}_k(L_1, \mathcal{P}) \) for each \(k \). Note that \(M_k P_1 = P_1 M_k \) for all \(k \).

Now \(P = (P_1, \ldots, P_1) = \phi_0(M_k, P_1) = \phi_0(\mathcal{V}_k(L_1, \mathcal{P})) = \mathcal{R}_k (L_1, \mathcal{P}) \).
all \(k = 0, 1, \cdots, n - 1\). Hence \(P \in \bigcap_{k=0}^{n-1} R_k(\bar{L}, \bar{P})\). Therefore \(F(\bar{L}, \bar{P}) \subseteq \bigcap_{k=0}^{n-1} R_k(\bar{L}, \bar{P})\). This completes the proof.

In view of (1) in Lemma 4.3, for each \(k = 0, 1, \cdots, n - 1\), we obtain an affine algebraic subset \(\phi_k(V_k(L_1, P))\) of \(C^{4n(a+b)}\). In the rest of this paper we denote it by \(\hat{V}_k\) for simplicity, that is, \(\hat{V}_k = \phi_k(V_k(L_1, P)) = R_k(\bar{L}, \bar{P}), 0 \leq k \leq n - 1\). Then we have the following theorem:

Theorem 4.4. (1) \(R(\bar{L}, \bar{P}) = \bigcup_{k=0}^{n-1} \hat{V}_k\)

(2) \(\phi_0(\mathcal{R}(K_2, P_*)) \subseteq F(\bar{L}, \bar{P}) \subseteq \bigcap_{k=0}^{n-1} \hat{V}_k\)

Proof. (1) By Lemma 4.3, we obtain that \(R_k(\bar{L}, \bar{P}) = \phi_k(V_k(L_1, P)) \subseteq \hat{V}_k\) and

\[R(\bar{L}, \bar{P}) = \bigcup_{k=0}^{n-1} R_k(\bar{L}, \bar{P}) \subseteq \bigcup_{k=0}^{n-1} \hat{V}_k.\]

Note that \(R_k(\bar{L}, \bar{P}) \subset R(\bar{L}, \bar{P})\) and \(R(\bar{L}, \bar{P})\) is an affine algebraic subset of \(C^{4n(a+b)}\). Since \(\hat{V}_k\) is the smallest algebraic subset of \(C^{4n(a+b)}\) containing \(\phi_k(V_k(L_1, P)) = R_k(\bar{L}, \bar{P})\), we have that \(\hat{V}_k \subset R(\bar{L}, \bar{P})\) for all \(k = 0, 1, \cdots, n - 1\). Therefore \(\bigcup_{k=0}^{n-1} \hat{V}_k \subset R(\bar{L}, \bar{P})\).

(2) By (3) of Lemma 4.3,

\[\phi_0(\mathcal{R}(K_2, P_*)) \subseteq F(\bar{L}, \bar{P}) \subseteq \bigcap_{k=0}^{n-1} R_k(\bar{L}, \bar{P}) \subseteq \bigcap_{k=0}^{n-1} \hat{V}_k.\]

This completes the proof. □

Corollary 4.5. (1)

\[\dim(\phi_0(\mathcal{R}(K_2, P_*))) \leq \dim(F(\bar{L}, \bar{P})) \leq \dim(R(\bar{L}, \bar{P}))\]
Proof. (1) follows from Theorem 4.2 and Theorem 4.4.

(2) Since $\mathcal{V}_0(L_1, P) \subset \mathcal{R}(L_1, P)$, $\dim(\mathcal{V}_0(L_1, P)) \leq \dim(\mathcal{R}(L_1, P))$. By Theorem 4.2, $\dim(\mathcal{F}(\tilde{L}, \tilde{P})) \leq \dim(\mathcal{R}(\tilde{L}, \tilde{P}))$ and, by Theorem 4.4, $\dim(\mathcal{R}(\tilde{L}, \tilde{P})) \leq \max\{\dim(\tilde{V}_0), \dim(\tilde{V}_1), \ldots, \dim(\tilde{V}_{n-1})\}$. Since $\phi_k : V_k(L_1, P) \to \tilde{V}_k$ is a dominating map, $\dim(\tilde{V}_k) \leq \dim(V_k(L_1, P))$ for each $k = 0, 1, \ldots, n - 1$. By (3) of Proposition 3.2, $\dim(V_0(L_1, P)) = \dim(V_k(L_1, P))$ for all $k = 1, \ldots, n - 1$. Hence $\dim(\tilde{V}_k) \leq \dim(V_0(L_1, P))$ for all $k = 0, 1, \ldots, n - 1$. Therefore $\dim(\mathcal{R}(\tilde{L}, \tilde{P})) \leq \dim(\mathcal{V}_0(L_1, P))$. This completes the proof. \hfill \square

REFERENCES

Department of Mathematics
Pusan National University
Pusan 609-735, Korea

E-mail: sangyou1@pusan.ac.kr