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A New Block Matching Algorithm for Motion Estimation

Soo-Mok Jung*

—a Abstract ®

In this paper, an efficient biock matching algorithm which is based on the Block Sum Pyramid Algorithm (BSPA)
is presented. The cost of BSPAL1] was reduced in the proposed algorithm by using 12 norm and partial distortion
elimination technique. Motion estimation accuracy of the proposed algorithm is equal to that of BSPA. The efficiency
of the proposed algorithm was verified by experimental results.
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1. Introduction

In image sequence coding, the correlation be-
tween consecutive frames can be reduced by the
motion estimation and motion compensation te-
chnique[2]. Motion estimation plays an impor-
tant role in reducing the bit rates for transmis—
sion or storage of video signals. The accuracy
and efficiency of motion estimation affects the

efficiency of temporal redundancy removal.

Motion estimation methods are classified into
two classes of block matching algorithms (BM
A)[2][3] and pel-recursive algorithms (PRA)[4].
Owing to their implementation simplicity, block
matching algorithms have been widely adopted
by various video coding standards such as
CCITT H.261[5], ITU-T H.263[6], and MPEG
[7]. In BMA, the current image frame is par-
titioned into fixed-size rectangular blocks. The

motion vector for each block is estimated by
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finding the best matching block of pixels within
the search window in the previous frame
according to matching criteria.

Although Full Search algorithm (FSA) finds
the optimal motion vector by searching exhaus—
tively for the best matching block within the
search window, its high computation cost limits
its practical applications. To reduce computation
cost of FSA, many fast block matching algo-
rithms such as three step search[8], 2-D log sear-
chl3], orthogonal search[9], cross search[10],
one-dimensional full search[11], variation of
three-step search[12, 13], unrestricted center-
biased diamond search[14] etc. have been de-
veloped. As described in[15], these algorithms re-
ly on the assumption that the motion compen-
sated residual error surface is a convex function
of the displacement motion vectors, but this
assumption is rarely true[16]. Therefore, the
best match obtained by these fast algorithms is
basically a local optimum.

Without this convexity assumption, Succes—
sive Elimination Algorithm (SEA) proposed by
Li and Salari[17] reduces the computation cost
of the FSA. To reduce the computation cost of
SEA, Block Sum Pyramid Algorithm (BSPA)[1]
and Multilevel Successive Elimination Algorithm
(MSEA){18] were proposed. Our research team
proposed Efficient Multilevel Successive Elim—
ination Algorithms for Block Matching Motion
Estimation (EMSEA)[19] to reduce the compu-
tation cost of MSEA. In New Block Matching
Algorithm for Motion Estimation (NBMA), the
2 norm{20, 21, 22] was used to reduce the com-
putation cost of BSPA. Also, the partial dis-
tortion elimination (PDE) scheme of EMSEA
was improved and then the improved scheme
was applied to BSPA in NBMA. The motion
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estimation accuracy of NBMA is identical to
that of FSA and the computation cost of BSPA
is reduced by using NBMA.

2. Block Sum Pyramid
Algorithm

The SEA achieves the same estimation ac-
curacy as the FSA while requiring less com-
putation time. In SEA, the displacement vector
of the corresponding block in the previous frame
is used as the initial motion vector for the pre-
sent template block[23]. The SEA uses the sum
norm of a block as a feature to eliminate unnec-
essary search points. The sum norm of a block
B of size N XN is defined as

N
; | B(i, i)l (1)
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where B (i, j) is the gray level of the (i, j)th
pixel of block B. Let St be the sum norm of the
template block T, Sx be the sum norm of a
candidate matching block X, and curr_MADmin
be the current minimal MAD during the search
process. Let MAD (T, X) be the MAD between
T and X and is defined as

N N
> 21 | TG, i)Y— X3, )] 2

i=1 j=

MAD(T, X) =

where T (i, /) and X (i, j) represent the gray

values of the (i, )th pixels of T and X. The

authors had shown that the following inequality

is true in [17] :

MAD(T, X) =1 X-YIh 2 IIXIL = I¥ll | 3

i=1j

Based on the above inequality, the SEA
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discards each candidate matching block X with
ISt ~ Sx|=curr_MAD,,, which can save a lot
of search time. Block Sum Pyramid Algorithm
can eliminate those impossible matching blocks
by exploiting the sum pyramid structure of a
block.An image pyramid is a hierarchical data
structure originally developed for image coding
[24]. Assume that each block is of size NXN
with N=2". Then, for each block X, a pyramid
of X can be defined as a sequence of blocks {
X0 x™ x™ X™ - X" with X™ ! having
size 2™ x 2™ and being a reduced-resolution
version of X as shown in [Fig. 1] Note that
X’ has only one pixel. A pyramid data structure
can be formed by successively operating over
2X?2 neighboring pixels on the higher levels.
That is, the value of a pixel X™* (i, j) on level
m-1 can be obtained from the values of the
corresponding 2 X 2 neighboring pixels X™ (2i-1,
-1, X™2i-1, 2), X™(2i, 2j-1), and X™(2i, 2f)
on level m as shown in equation(4).

X" ) =X"Ci-1, -1 + XM -1, %)
+ X260, 2/-1) + X724, 27) (4)

For two blocks X and Y, let MAD™(X, Y) be
MADX™ Y™, ie,

MAD™(X, Y)
®)

2m 2
=2 21 X"Gm=Y"G b

where X™(j, h) and Y™(j, h) represent the
values of the (j, Ath pixels on X" and Y™ re-
spectively. Thus, on the top level, MADO(X,
Y)=1Sx - Syl. From the above definition, the
following theorem holds.

MAD(X, Y) = MAD" XX, Y)>MAD" %X, Y)
> - > MADYX, V) ®)

Block Sum Pyramid Algorithm uses the above
theorem (6). The Block Sum Pyramid Algorithm
first constructs the sum pyramid of every block
that corresponds to a search position in the
previous frame. To search for the best matching
block of a template block T, the sum pyramid
of T is established. Then, the MAD between T
and the block with displacement vector (0, 0) is
evaluated, and this value is considered as the
current minimum MAD (symbolized as curr_
MADnmin). For any other search block X, the
algorithm first checks the MAD on the top level,
MAD’ (T, X). It MADXT, X) is greater than
curr_MADmn, this block can be eliminated from
being considered as the best matching block.
Otherwise, the MAD on the first level is
checked.

If MADNT, X) is greater than curr_MAD i,
for the same reason as above, this block can be
eliminated. If it is not, the second level is tested.
The process is repeated until this block is
eliminated or the bottom level is reached. If the
bottom level is reached, then MAD (T, X) is
calculated and checked. If MAD (T, X) < curr
_MADuin, the current minimum distortion curr_
MADumin is replaced with MAD (T, X). Block
Sum Pyramid Algorithm can eliminate many
search blocks without evaluating their MADs.
Assume that the size of the image frame is
WxH. For each level of the pyramid, calculation
of the sum of 2X2 neighboring pixels requires
3(W-1)(H-1) additions. However, using the idea
for fast calculation of the sum norm developed
in[17], the complexity can be reduced to be (2W
~1)(H-1) additions for each level. If the block
size is 16 X 16, i.e., N =16, the overhead for con-
structing the sum pyramid is 4@W-1)(H-1).
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Since there are (W/N)(H/N) template blocks in
an image frame, the computation overhead for

each template block is

42W-1)(H-1)/ [(W/N)(H/N)] =
N*8-4/W-8/H+4/WH)=8N*  (7)
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[Fig. 11 A pyramid data structure

BSPA procedure is as follows :

step 1 ! select an initial search block within
the search window in the previous
frame.
step 2 : calculate the motion vector (MV) and
the MAD at the selected search block.
these MV and MAD become the cur-
rent temporary motion vector and the
current minimum MAD respectively
(temp_MV = MV, curr_MAD = MAD)
step 3 : select another search block among the
rest of the search blocks
step 4.0 ! calculate the MAD (T, X) at the se-
lected search block. if (curr_ MADjmn
< MADYT, X) goto step 6
step 4.1 : calculate the MAD'(T', X) at the se-
lected search block. if (curr MADmin

< MADXT, X)) goto step 6

step 4.(n-1) : calculate the MAD™ (T, X) at
the selected search block.
if (curr_.MADpin < MAD™?”
(T, X)) goto step 6
step 4.n . calculate the MAD at the selected
search block.
if (curr_MADmn < MAD) goto step 6
step 5 curr_MADmin = MAD

calculate the motion vector at the selected
search block. This motion vector becomes the
current temporary motion vector (temp_MYV =
MV)

step 6 : if (all the search blocks in the search
window are not tested?) goto step3

step 7 :the optimum motion vector=temp
_MYV, the global minimum MAD =
curr_MADpin

3. A New Block Matching Al-
gorithm for Motion Estima
-tion

It is possible to rewrite (3) using the [z norm
measurement. However, such approach requires
the square root operation. An alternative bounds
the Iz norm by [; norm using the mathematical

inequality[21, 22].
IX— Y6, DI<VN IIX— Y, DIy 8)

where N is the dimensionality of blocks X and
Y. Combining this bound with the bound on the

; norm given in (3) results in



X1 = 1Y G, ) <V N 1X— Y, )l )

Squaring the both sides removes the square
root operation

XN =Y G D?
N

<(IX-YG, HiIy? (10)

Again assume that vector (m, n) is the current
best guess vector for the optimal displacement
vector and that vector (7, j) is a possible candi-
date. If (i, /) is a better candidate than (i, j) then
(XY GHIDYN) < (IX-Y(mm)ll2). Thus,
if this condition is true, the norm squared at {;,
J) must be explicitly calculated. However, if this
condition is not true, then (i, j) cannot be a better
candidate than (m, n) and the norm at (i, j) does
not need to be calculated. This l; measurement
was applied to SEA to reduce the computations
cost of SEA[20].

Also, partial distortion elimination (PDE) tech-
nique can be applied to BSPA. The BSPA spe-
eds up the process of finding the best motion vec-
tor by eliminating impossible candidate vectors
before their MADs are computed. Partial distor-
tion elimination (PDE)[25] can be used in with
BSPA to reduce the computation further for
these vectors where the norm |7G, /)-X(, /)|
must actually be computed. We observe that
since all of the terms in the equation (2) are pos-
itive, if at any point the partially evaluated sum
exceeds the current minimum MAD{curr_MAD
min), that candidate block X cannot be the best
matching block and the remainder of the sum
does not need to be calculated. While it is not
efficient to test the partial sum against the
curr_MADmin every additional term is added, a
reasonable compromise is to perform the test
after N times additions when block size is NXN

as shown in [fig. 2]. So, the maximum number
of PDE test is V.

In BSPA, MAD is calculated all the NXN
pixels and then the calculated MAD is compared
with curr_MADpmin

[Fig. 2] PDE test in MAD calculation

4. Experimental Results of
New Block Matching Algori
thm for Motion Estimation

The standard QCIF(176 X 144) video sequences
in the frame work of H.263 such as “grandma.qc
if”, “suzie.qcif”, “claire.qcif” were used in the ex-
periment and we tested the first 100 frames of
the video sequences. The block(Y component of
the macro-block in H.263) size was 16 X 16 pixels
(N =16). The size of the search window was 31
X 31 pixels (M=15) and only integer values for
the motion vectors were considered. The frame
rate was fixed at 30 fps. In encoder implemen-
tations an offset is subtracted form di(0, 0) to
bias motion decisions in favor of nonmoving
background blocks. Here we simply set the

offset to zero for simplicity. Experimental re—
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(Table 1) The computations of NBMA

Algorithm Test Avg. # of Avg. # of Qverhead . Total Computqtions

sequence m.e/frame TOWS/m.e. (in rows) (in rows) reduction
grandma 350.7 16.00 29,749.3 35,360.5

BSPA suzie 607.1 16.00 27,6205 37,334.1
claire 228.3 16.00 17,9208 21,5736
grandma 307 1312 29,481.6 34,0827 3.6%

NBMA suzie 607.1 14.25 273719 36,023.1 3.5%
claire 2283 13.39 17,7595 20,930.6 3.0%

sults are shown in <table 1> In <table 1>, m.e.
means matching evaluation that require MAD
calculation, avg. # of rows means the number
of calculated rows in the MAD calculation be-
fore partial distortion elimination. Overhead(in
rows) is the sum of all the computations except
MAD calculation. “in rows” means that the com-
putations are represented in order of 1 row MAD
computations.

It is important to notice that with the BSPA,
the efficiency of the procedure depends on the
order in which the candidate motion vectors are
searched, and that the most promising candi-
dates should be tested first. This eliminates the
maximum number of candidates. In our exper-
iment, we used spiral search.

The NBMA which incorporates the BSPA with
Iz norm and PDE technique can reduce the va-
lues of “Avg. # of rows/m.e.” and “overhead(in
rows)”. By using PDE technique, the partially
evaluated MAD is greater than or equal to the
current minimum MAD(curr_MADum») then the
point cannot be the optimum motion vector and
the remainder of the sum does not need to be
calculated. So, the “Avg. # of m.e./frame” can
be reduced. But, /> norm and PDE technique does
not effect on the number of matching evaluation.
So, “Avg. # of m.e./frame” does not change. The
proposed algorithm (NBMA) can reduces the

computations of BPSA by 3.6%, 3.5%, 3.0% for
grandma.qcif, suzie.qcif, and claire.qcif respec-

tively.

5. Conclusions

A New Block Matching Algorithm based on
BSPA has been proposed to reduce the com-
putations of BSPA. The /> norm was used to
reduce the computation cost of BSPA. Also, the
partial distortion elimination scheme of EMSEA
was improved and then the improved scheme
was applied to BSPA in NBMA.

The NBMA can find the global optimum so-
lution and outperforms BSPA and can reduce
the computations of block matching calculation
of BSPA 3.6% maximally. The NBMA is a very
efficient solution for video coding applications
that require both very low bit-rates and good
coding quality.
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