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ABSTRACT

Implementation and experimental verification of a simple neuro-controller (SNC) as a speed controller for a brush less

DC (BLDC) motor is presented. The SNC with one weight and a linear hard limit activation functicn is trained on-line

using the back propagation algorithm. A modified error function is used to ensure good performance during the on-line

training, which has been used without previous off-line training. The SNC has been implemented using a

computer-interface card mounted on a PC. The driving system performance has been investigated by a number of

experimental tests for a variety of input reference speed trajectories.
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1. Introduction

Recently there have been many cases in the control field
where automatic control theories and techniques have
played an important role. With the progress in control
theory, applications for automatic contro! with improved
performance are non implemented. As systems to be
controlled become increasingly complicated, it is expected
that control theories and techniques will also make further
progress.

Adaptive control, such as the Model Reference
Adaptive Control and the Self-Tuning Regulator, has
become available to control systems having much
uncertainty. Nevertheless, traditional adaptive control
suffers from some problems such as exponentially
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complicated calculations for the number of unknown
parameters and limitations on the applicability to
nonlinear systems. Many attempts have been made to
apply artificial neural network techniques to deal with

nonlinearities and uncertainty in the controlled system!' !,

2. ANN Training Methods

Training of a neural network is basically a process of
finding the global minimum of a predefined objective
function. There are two learning models for a neural
network as a controller!’.

2.1 Off-line Training

In this method, the learning process of the neural
network is carried out to minimize the overall error
between the desired neural network output (plant input)
and the actual neural network output. After the learning
process is fully carried out, the connection weights
between units in the neural network are fixed. Then. the
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neural network is used as a controller for the plant. The
success of this method depends largely on the ability of
the neural network to learn to correctly respond to inputs
that were not specifically used in the learning phase.

This method has the problem that the learning process
of the neural network is carried out off-line and that a
tremendous amount of unnecessary training data must be
used because essential and desirable inputs for the plant

are unknown.

2.2 On-Line Training

To overcome the off-line learning problems, the neural
network learns during on-line feed-forward control. In this
method, the neural network controller can be trained in
regions of interest only since the reference value is the
input signal for the neural network. The network is trained
to find the plant output that drives the system output to the
reference value. The weights of the network are adjusted
so that the error between the actual system output and the
reference value is maximally decreased in every iteration
step.

The most popular training algorithm is the back
propagation algorithm. It is based on the steepest descent
method. The algorithm is therefore stochastic in nature!*’;
that is, it has a tendency to zigzag its way about the true
direction to a minimum on the error surface. Consequently,
it suffers from a slow convergence property, which in turn
makes the back propagation algorithm computationally
expensive.

Recently, considerable effort has been devoted to the
brushless dc drive. The brushless dc motor has been
widely known for its high efficiency and low-maintenance
requirements as compared to the dc motor. The other
characteristics of the brushless dc motor include low
inertia, high torque, and wide-speed bandwidth. Due to
these characteristics, it has been widely used in the areas

of robotics manipulators,
5116}

aerospace, and military
applications

This paper presents an on-line trained neuro-controller
for speed control of a brushless dc (BLDC) motor. A servo
amplifier circuit has been used for driving the BLDC
motor. A computer-interface card has been designed and
implemented to provide the motor control signals and to

measure the motor speed.

3. The Experimental System

Figure 1 shows the block diagram of the experimental

system.
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Fig. 1. The block diagram of the driving system.
3.1 Motor and Servo-Amplifier
The tested motor and the used

specifications are shown in Appendix A.l and A.2

servo-amplifier

respectively. The servo-amplifier circuit is equipped with
a proportional plus integral controller (PI) as a speed
regulator as shown in Fig. 2.
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Fig. 2. Block diagram of BLDC motor and its servo-amplifier
circuit.

3.2 Microcomputer Interface Card

A general-purpose interface card (Fig. 3) was built to
interface the microcomputer to the power circuit of the
The card consists of one
(PPI-8255), one
peripheral interval timer (PIT-8254), and two digital to

motor and the driver.

programmable parallel interface

analog converters (DAC).
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Fig. 3. Block diagram of the implemented interface card.

The input to the interface card is the actual motor speed.
The digital output signals are for motor direction and
motor brake. The analog output signals are for motor
control and actual motor speed monitoring. The interface
card receives the motor speed signal from a shaft encoder
as a train of pulses with a frequency proportional to the
speed of the motor. These pulses are counted using the
PIT and converted to a digital quantity for control and
monitoring purposes. One DAC is used for control signal
generation and the other for actual speed monitoring. The
DACSs receive their data via the PPL. The block diagram of
the interfacing card is shown in Fig. 3.

4. Motor Tests without the Neuro-Controller

The block diagram, shown in Fig. | is used to test the
BLDC motor under no load condition. A C++ program
was written to test the drive system. The reference speed
trajectory was generated by the program as analog signal
via the DAC converter and reads the motor speed signal as
a variable frequency signal via the PIT. The speed signal
is converted to a digital value proportional to the motor
speed for monitoring purposes. The speed reference signal
and the motor actual speed signal are displayed using the
interfacing card and a storage oscilloscope. The
implemented reference speed trajectories were sinusoidal,
ramp and step-up and step down trajectories.

Figures (4, 5 & 6) show sinusoidal, ramp, and step
reference input signals to the motor driver and the
resultant motor actual speed signals respectively at

different rates of change for the speed signal. These

figures (4, 5 & 6) show that the driving system has a good
response at lower frequency but its performance
deteriorates as the reference signal rate of change
increases.

It is proposed to use a neuro-controller to improve the
system performance especially at the higher rate of change
of the reference inputs. The following section introduces
the neuro-controller and its application to control the
speed of the BLDC motor in real time.

Fig. 4. Input sinusoidal reference and output speed signals of
the BLDC motor with different rate of char.ge.
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Fig. 5.
the BLDC motor with difterent rate of change.

Input triangular reference and output speed signals of

Fig. 6. Input square wave reference and output speed signals of
the BLDC motor (X-scale: | div = 0.5 sec, Y-scale: 1 div = 800

rpm).
5. On-Line Trained Neuro-Controller

The standard BP training algorithm can be briefly
described as below!”":

The input and output of a neuron j are given as:

Spi= 2 W;i Oy + 6; (1)
Op; = F(Sy)) (2)

where, S,;: input of neuron j for pattern p
O,;: output of neuron j for pattern p
6;: neuron bias
W;;: weight from unit i to unit j
F(S,;): activation function

The BP training algorithm is an iterative gradient
algorithm. It is normally designed to minimize the mean
square error between the actual output of an ANN and the
desired output. It uses a recursive algorithm starting at the
output units and working back through the hidden layer to
adjust the neural weights according to the following

equations:
Wji (t+1) = Wji H+A Wji (1) 3)
AW;=18, Oy 4)
8,5 = -0E,/0 O . F(Sy) (5)

where, F/(Spj): differentiation of F(S)

E .

o error function

n: learning rate,  §y;: error term for unit j
The error function normally used in the standard BP

algorithm is'*!
E, = 0.5(1,-Op)’ (6)

Where, t,;is the target output of the neuron j in the ANN.
When neuron j is in an output layer,

-OEy/0 Opj = (t-Opy) (N

and when j is in a hidden layer

—6Ep/(3 Opj - Zﬁpk ij (8)

In this paper it is proposed to replace (7) used in the
conventional BP training algorithm with a function having
the general form:

error = r(t) — c(t)*f(.) )

where, r(t): system reference input,
c(t): system output, and
f(.): a feedback function consisting of proportional
and derivative terms.

Studies with an on-line trained neuro-controller have
shown that the proposed error function (9) has a
significant effect on the neuro-controller performance '*1%!.
The neuro-controller can be used in the on-line mode
without off-line training using error function.

A modified error function to improve the performance
of a neuro-controller trained on-line by the back
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propagation (BP) algorithm is presented. The performance
is significantly improved with the proposed error function
compared to that with the traditional error function used in
the BP algorithm. Based on this modified error function,
the structure of the network can be greatly simplified
leading to a very simple neuro-controller'®.

The proposed simple neuro-controller consists of only
one neuron with one weight and one bias as shown in
Figure 7, and a linear hard limit activation function as
shown in Figure 7.

The neuro-controller output can be derived as:

u=a),ef Wl—Hl (10)

Based on the back propagation algorithm, the weight and
bias change will be as follows:

AW =n*error* @ (11
AG =—n*error (12)

where: “error” is the proposed modified error function.

dw dwref
error = (W,.¢ —0,,) — k(—HL - —) (13)
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Fig. 8. The simple neural network.

6. Experimental Results Using the SNC

The system block-diagram with the SNC is shown in
Fig. 9.

Figure 10 shows the reference square wave signal as
well as the actual speed signal with only the built-in

PI controller in the servo amplifier card.

By applying the SNC controller (its parameters are
shown in Appendix A.3) the actual speed response is
improved as shown in Fig. 11.

Figures 12 and 13 show another input signal before and
after applying the SNC controller respectively. It is clear
that the driving system with the neuro-controller has better

performance.
ANN
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Fig. 9. System block-diagram with SNC.

CHE 4, L A c

Fig. 10. The square wave input signal and actual speed signal
without SNC controller (X-scale: 1 div = 0.5 sec, Y-scale: 1 div
= 800 rpm).
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Fig. 11. The square wave input signal and actual speed signal
using the SNC controller (X-scale: 1 div = 0.5 sec, Y-scale: 1 div
= 800 rpm).
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Fig. 12. The sinusoidal input signal and actual speed signal
without the SNC controller (X-scale: 1 div = 0.5 sec, Y-scale: 1
div = 800 rpm).
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Fig, 13. The sinusoidal input signal and actual speed signal
using the SNC controller (X-scale: 1 div = 0.5 sec, Y-scale: 1 div
= 800 rpm).

7. Conclusions

In this paper, an on-line trained neuro-controller based
speed control scheme was developed and experimentally
implemented for a BLDC motor. Based on a modified
error function the neuro-controller was simplified to a
very simple one. The modified error function allowed the
neuro-controller to be trained on-line with a fixed learning
rate and without previous off-line training. A Pl-controller
based drive system is used and the system performance
with and without the neuro-controller were compared. The
comparative results indicate that the performance using
the neuro-controller is superior, particularly with reference
speed trajectories changing with higher rate.

Appendices

A.1 Motor Specifications

Nominal voltage (U,) 48V
Terminal resistance (R) 4.4 Q
Terminal inductance (L) 678 uH

(1]

(2]

[3]

(4]

15]

(6]

Output power (Pomax) 101 W

No-load speed (n,) 12200 rpm

Stall torque (My) 401 mNm
No-load current (I,) 0.109 A

Speed constant (k,) 258 rpm/V
Back-EMF constant (Kg) 3.877 V/rpm
Torque constant (ky) 37.02 mA/mNm
Current constant (k) 0.027 A/mNm
Mechanical time constant (t,,) 11 ms

Rotor inertia (J) 34 gem?

A.2 Servo Amplifier specifications

BLD 5608

2-Quadrant PWM

Single supply source (10:56 VDC)
Pulse-by-pulse current limiting
Speed regulator type PI

Switching frequency 25 kHz

A.3 Neuro-Controller Parameters:

0.13
Error function constant (k;) 0.1

Learning rate (1)
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