1. 서론

최근 급속히 발달하고 있는 정보통신 산업은 과거 드립적으로 성장에 오던 가전기기, 컴퓨터, 통신, 방송, 영상, 오락 등 여러 산업들이 서로 융합된 고도의 기술 집약적 멀티미디어 산업으로 변모해 가고 있다. 또한 전세계적인 디지털 멀티미디어 시대의 도래와 정보화 서비스 기반의 구축으로 정보량이 기하급수적으로 증가하며, 이러한 대량의 다양한 정보의 홍수로부터 유용한 정보를 얻기 위한 필수적인 도구로서의 정보 저장 및 재생, 검색장치 역할을 효율적으로 수행하는 차세대 대용량 정보 저장장치의 필요성이 급증하고 있다. 이와 같이 멀티미디어 사회에서는 기존의 Text나 Image 등의 정보를 포함하여 음성 및 비디오(동영상) 정보가 주류를 이루게 될 것이고 나아가 삼차원 동영상 및 주문형 비디오 등 막대한 정보가 공급되고 소비될 것으로 예측된다. 이에 따라 각 개인 및 기업 등이 소비하는 정보의 양도 엄청나게 증가할 것이며 이를 저장하고 관리할 수 있는 대용량 정보 저장장치가 필요적으로 수반되는 새로운 멀티미디어 정보환경이 형성될 것으로 기대되고 있다. 그림(1)에서 보듯이 향후 정보통신 기술의 급속한 발전에 따라 2010년경에는 저장장치에 요구되는 저장용량이 Tera Byte급 이상이 요구되며 통신환경의 고속화에 따라서 정보 저장장치에 요구되는 데이터 전송률도 수 Gbps급 이상의 처리 속도를 요구하게 될 것으로 전망되고 있다.

따라서 이러한 급속한 정보 저장장치의 환경변화에 대응하기 위해서는 정보 저장매체의 초 대용량화, 초 고속화, 초 소형화에 대한 요구가 더욱 점점해
 nghìn 것으로 전망된다. 한 예로, 멀티미디어 정보통신의 총이라고 할 수 있는 주문형 비디오(VOD : Video-On-Demand)의 사용률을 위해서는 비디오 서비스의 용량이 100TB 이상, 데이터 전달속도는 1Gbps 이상이 요구된다. 그러나 기존의 반도체 메모리 기술, HDD (Hard Disk Drives), MOD(Magneto-Optic Disc), 및 CD/ DVD 등 기존 저장장치로는 이러한 21세기 고도 정보화 사회에서 요구되는 대학도 양의 정보를 저장하고 처리하는데 있어서 기술적, 경제적 한계가 있음에 따라 새로운 차원의 차세대 초대용량 정보 저장매체 및 원활기술의 개발에 대한 필요성이 점점히 요구되고 있다. 또한 HDD, CD 및 DVD 등 현재 사용되고 있는 고밀도 데이터 스토리지 시스템은 각 비트 단위로 기계적인 래프 양식(Read Access)을 하여야 하기 때문에 데이터 처리 속도의 한계를 가질 수밖에 없다는 점을 고려할 때 새로운 차원의 차세대 초고속, 초대용량 저장매체에 대한 관심은 갈수록 커질 전망이다. 이와 같이 2010년 경 예상되는 기존 정보 저장장치 및 기기 저장장치를 포함한 3차원 저장장치의 기술 한계를 극복하기 위한 방안으로 현재 정보 저장장치 관련 기술의 개발 방향은 그림(2)의 정보 저장장치의 패러다임 변화도에서 보듯이 3차원 저장장치(3-Dimensional Storage)로의 패러다임이 점차 되고 있는 추세이다.
3차원 저장장치 중 최근 큰 주목을 받고 있는 기술은 홀로그램을 이용한 광 저장 장치인 홀로그래픽 데이터 스토리지(Holographic Data Storage)이다. 보통 홀로그램이라고 하면 3차원 영상의 재현을 생각하지만, 보다 정확히는 홀로그램이란 저장될 때 사용된 광파를 독감하게 재생하는 것이 또는 그 저장된 상태를 뜻하며, 홀로그램 저장장치에서는 2차원 광 마름을 저장하려고 재생하게 된다. 저장매체로는 주로 광물질 성 크리스탈(Photorefractive Crystal) 또는 포토폴리머(Photopolymer)들이 사용되며 2차원 정보를 3차원 층적 홀로그램으로 저장하게 된다. 이러한 저장 방법은 적절한 다중화 기법에 의하여 공간적으로 중첩되어 저장된 정보라도 서로 독립적으므로 분리하여 얻어낼 수 있으며, 2차원 영상이 한계 변에 재생되는 데이터 단위의 잃기를 줄이기 때문에 초대용량의 병렬 양식 초고속 데이터 스토리지 시스템의 구현이 가능하게 한다[1]. 홀로그램의 다중기록을 이용한 데이터 스토리지는 요즈을 새로운 광물질 물질의 개발과 전자분야에서의 SLM (Spatial Light Modulator) 및 CCD(Charge-Coupled Device) 등의 광 소자의 높은 발전으로 상업화를 고려할 수 있게 되었고, 따라서 홀로그램이 데이터 스토리지는 현재의 홀로그램 기술에 광통신, 광컴퓨터, 레이저 및 핵심 소자인 광물질물질의 개발부터 발생하고 있는 전자분야가 협력한 시스템 기술이라고 할 수 있다.

2. Holography를 이용한 정보의 기록 및 재생 원리

.null

그림 2. 정보 저장장치 기술의 패러다임 변화.
의 강도 뿐만 아니라 방향도 기록한다. 그림(3a)에 나타낸 것처럼 대상 물체의 빛의 강도와 방향은 물체 광(Object Beam)과 기준광(Reference Beam)의 간섭에 의해서 구성되며, 그림(3b)에서 보듯이 물체광과 기준광은 간섭무늬(Interference Pattern)를 만든다. 이렇게 형성된 간섭무늬는 그림(3c)에서 보듯이 간섭무늬의 강도에 반응하는 물질 속에 기록된다. 마지막으로 그림(3d)에서 보듯이 기록된 간섭무늬에 기준 광을 조사함으로써 대상 물체의 3차원 상인 홀로그램을 재현하게 된다. 이러한 홀로그램을 이용한 정보의 기록/재생 원리 중 체적 홀로그램(Volume Hologram)이라는 방법을 이용하면, 각각 다른 기존 광을 가지고 저장 물질의 같은 장소에 많은 Hologram을 중첩 기록함으로써 작은 입방체 내부에 방해한 Data를 저장하는 것이 가능하다[3].

이 때 사용 가능한 대표적인 저장물질로는 광물질 성 단결정(Photorefractive Crystal)과 포토폴리머(Photopolymer)가 있다. 그림(4)에 체적 홀로그램의 중첩기록 원리 및 저장물질의 광물질성 효과(Photorefractive Effect)를 이용한 홀로그레픽 디지털 데이터 저장 장치의 개략도를 도시하였다. 그림(4)에서 데이터 받은 Beam Splitter에 의해서 데이터 범과 기준 빔으로 나누어지고, 데이터 범은 SLM(Spatial Light Modulator)에 의해 페이지 단위의 이진 데이터가 실리게 되며, 기준 빔은 흐르는 물에 임시하게 된다. 이것은 다른 기존 광을 만드는 방향으로 써 각 기록시마다 기존광의 입사각도를 변화시키는 각도 중첩 방법(Angle Multiplexing)이다[4]. 그 다음 과정으로 두 빔이 저장물질 내에서 만나게 되므로서 저장물질 내에서 밝고 어두운 간섭무늬가 형성되며, 이에 저장물질의 광물질성 효과에 의해서 이러한 간섭무늬가 저장물질의 미소한 광을 변화하는 형태로 데이터를 기록하게 된다. 그 다음 데이터를 중첩기록하기 위해서는 기준광의 저장물질로의 입사각도를 바꾸어 다음 페이지를 기록하게 된다. 이와 같은 과정을 계속 반복하면서 이진 Data의 Page 단위로 구성되는 수평에서 수천 개의 Hologram을 같은 장소에

그림 3. Holography를 이용한 정보의 기록/재생 원리.

저장할 수 있다. 데이터를 읽을 때에는 기록시 사용한 동일한 기준점을 조사하면 빨간점과 간섭되었던 데이터 페이지 신호가 나오게 되고, 이 제생광 신호의 CD로 받아 처리하게 된다. 심지어 홀로그램 디지털 데이터 스토리지는 동일 장소에 많은 Data를 단위로 기록, 재생하므로 이론적으로는 12cm이라는 엄청난 저장 밀도 및 1GHz 이상의 빠른 Data 전달률을 갖는 기록 및 재생이 가능하게 된다[5].

3. 홀로그램 디지털 데이터 스토리지의 장점

현재 우리는 고도 정보화 사회를 지향하고 있고, 따라서 정보의 촉매자로 이를 활용한 응용분야는 빠른 속도로 확장되고 있다. 이러한 고도 정보화 시대에는 필연적으로 데이터의 저장 및 입출력에 관계된 정보저장장치는 대용량 및 고밀도와High Capacity, High Storage Density와 입출력 데이터 전송률의 고속화(Fast Data Transfer Rate) 및 보다 빠른 데이터 접근시간(Short Data Access Time)을 갖도록 요구되어 진다. 이러한 3개의 측면이 대표적인 정보저장장치의 성능을 비교하는 지표로 사용되고 있으며 이러한 3대 지수 측면에서 홀로그램 디지털 스토리지는 많은 장점을 가지고 있다.

1) 빠른 데이터 접근시간(Short Data Access Time)

일반적으로 정보저장장치는 컴퓨터의 주기적장치로 사용되는 1차 메모리(Primary Memory)와 보조기억장치로 사용되는 2차 메모리(Secondary Memory) 및 백업장치로 쓰이는 3차 메모리(Tertiary Memory)로 크게 분류할 수 있다. 그런데 그림(5)의 정보저장장치 성능 비교도에서 알 수 있듯이 1차 메모리와 2차 메모리사이에는 데이터 접근시간(Access Time)이라는 성능 지수면에서 극단적인 차이(Gap)가 존재하고 있음을 알 수 있다. 이러한 2차 메모리의 데이터 접근시간의 성능차를 원인으로는 현존하는 2차 메모리인 CD-ROM, DVD-ROM, HDD(Hard Disk Drive), MO Disk 및 RAID(Redundant Array of Inexpensive Disks) 등 광학 및 자기 데이터 저장장치가 데이터의 입출력 및 접근에 기계적 구동이 수반되므로 데이터 전송과 접근속도를 고속화하는데 한계를 가지는 단점이 있기 때문이다. 이에 반하여 홀로그램 디지털 데이터 스토리지는 데이터 기록/재생의 원리상 채택 홀로그램의 원리를 이용하는 페이지 지향적인 메모리(Page-oriented Memory)로서 기계적인 구동부를 배제한 시스템 구성이 가능하므로 데이터 접근 시간도 100μs 이하로 매우 빠르며, 광 편향소자와의 발전에 따라서 데이터 접근 시간은 더욱 단축 시키는 것이 가능하다[6]. 따라서 홀로그램 디지털 스토리지는 앞서 언급한 1차 메모리와 2차 메모리 사이의 성능 지수 사이에 존재하는 데이터 접근속도 차이(Gap)를 줄일 수 있는 유일한 데일인으로 받아들여지고 있다.

이와 같은 홀로그램 디지털 데이터 스토리지에 의한 1차 메모리와 2차 메모리 사이의 데이터 접근시간 성능 지수 간격 개선 효과를 그림(5)으로 도시하였다.

2) 높은 저장밀도(High Storage Density)

현재 정보저장기기의 주류를 이루고 있는 HDD 계열의 자기 저장장치는 MR/GMR(Magneto-Resistive/Giant Magneto-Resistive) 헤드를 이용한 기록/재생 방식의 등장으로 멀기록 밀도 증가율이 연 60%/에 달하는 비약적인 발전을 하고 있으며, 기존의 수평자기 기록의 기록밀도 한계를 극복하기 위한 방법으로 수직 자기기록에 대한 연구가 진행되고 있으나, 이는 곧 Super Paramagnetic Effect에 의한 상자성의 한계
(~100Gbit/s)로 인하여 저장밀도의 계속적인 증가는 기대할 수 없는 점에서 저장밀도의 확장시점에서 커다란 단점을 가지고 있다. 또한 DVD 계열의 광저장장치는 다층기록(Multilayer Recording) 방식을 이용하여 대용량화를 시도하고 있으나, 근본적으로 빛이 흐르면 안 되므로 데이터 저장용 티(Hf)을 레이저 광원의 파장이하로 기록/재생할 수 없는 때문에 기록밀도의 개선에는 한계가 존재한다. 최근에 이러한 빛의 흐름 칼에 극복하기 위해서 SIL (Solid Immersion Lens) 등을 이용한 근접장 기록(NFR : Near Field Recording)에 대한 연구가 진행되고 있으며 이 기술 역시 기존의 광각기 기록(Magneto-optic Recording) 기술과 HDD의 기술을 활용하기 때문에 저장밀도의 확장시점에 대한 근본적인 해결책을 제시하지 못하며, 현존 정보 저장장치와 차세대 정보저장장치의 과도기적 성격을 갖는 정보 저장장치로 고려할 수 있다. 한편, 1980년대에 끝으로 홀로그램 탐색(Nano Probe)을 이용하여 표면의 Topography나 물리적상을 모니터링 할 수 있는 SPM 기술이 개발된 이래 이를 정보저장기에 응용하고자 하는 연구가 1990년대 들어 미국, 일본 등 전세계를 중심으로 확실히 진행 중이다.[7] 이 기술은 근접적으로 원자나 분자레벨의 정보를 기록/재생할 수도 있어 저장밀도를 확장시점으로 중대 시설을 갖는 신 개념의 저장기술임에는 틀림없지만 저장기술로서의 구현되기까지는 다소 시간이 걸릴 것으로 예측되고 있다.

반면에 홀로그램 데이터 스토리지의 경우에는 기록/재생의 원리가 저장물질의 재질을 이용하는 3차원 저장장치이며, 제작 홀로그램의 중첩기술 특성을 활용하므로 저장밀도를 확장시점으로 증대시키는 것이 가능하며 이론적으로 V/λ² (V : 저장물질의 재질, λ : 사용 광원의 파장)의 막대한 저장밀도를 구현하는 것이 가능하다[1]. 또한 최근에 주목 받고 있는 "Correlation Multiplexing"이라는 데이터 중첩기술을 사용하는 경우에는 저장밀도의 밀집도, 방향도 이동 선택성(Shift Selectivity)을 부가할 수 있어 데이터를 가장 레이어(Virtual Layer)에 다중으로 중첩 기록할 수 있어 초고밀도 기록/재생이 가능하다[8]. 이와 같이 홀로그램 데이터 스토리지가 저장밀도의 고밀도화를 촉진하는 측면에서 커다란 장점이 있다. 그렇다면 각 저장매체별 저장밀도 비교도에서 보듯이 홀로그램 데이터 스토리지가 저장밀도의 확장시점 측면에서 다른 저장매체 대비 탁월한 능성을 나타내고 있음을 알 수 있다.

3) 빠른 데이터 전송률 (Fast Data Transfer Rate)
현존 저장 장치의 HDD, CD/DVD 등은 데이터의 기록/재생 원리 자체가 시리얼한 기록/재생 방식이다. 즉 정보의 기록/재생을 각 bit 단위로 처리하므로 데이터 처리 속도 및 전송률에 있어서 한계를 가질 수밖에 없다. 이에 반하여 홀로그램 데이터 스토리지의 경우는 기록/재생 원리 자체가 병렬 방식이다. 즉 정보의 기록/재생을 각 bit의 묶음인 페이지(Page) 단위로 처리하므로 데이터 처리속도 및 전송
물론 매우 크게 높일 수 있는 장점이 있다. 즉 초당 1000프레임을 처리할 수 있는 1000 x 1000 픽셀의 SLM과 CCD를 사용하는 경우 1000 x 1000 x 1000 = 1Gbits/s의 매우 빠른 데이터 전송률을 구현할 수 있다. 그림(7)에 차세대 정보 저장장치를 기록/재생 방식에 따라 분류하고 각각의 데이터 전달을 정량을 도시하였다.

한편 상기 이외의 장점으로는 기존의 Tape나 Disk의 경우 저장 매체에 큰 결함이 발생할 경우 중요 한 데이터의 복구가 가능하지만, 홀로그램 데이터 스토리지의 경우에는 홀로그램 저장 매체에 큰 결함이 발생하는 경우에도 데이터가 완전히 손상되지 않고 단지 홀로그램을 조금 아래로 뿌리하여 원 Data의 복구가 가능하다. 즉, 높은 신뢰도(Reliability)의 시스템 구현이 가능하다.

또한 홀로그램 기록과 재생은 홀로그램 상에 매하는 기준표의 정확한 위치에 완전히 정확하게 위치된 정보 기록/재생 방식이기 때문에, 기존의 기록/재생 방식은 기록/재생 장치의 특성을 강화시킴으로써 중요한 사항의 모니터링이 가능하다. 즉, 홀로그램 데이터 스토리지의 경우 Disk 등의 광 메모리 시스템과 비하여 진동 문제에 대하여 강한 입자는 과도한 단점을 의미한다.

4. 홀로그램 데이터 스토리지의 핵심 기술별 개발 동향

차세대 저장장치인 홀로그램 데이터 스토리지의 핵심 기술 영역은 차세대 대용량 저장장치의 요구 성능 지수와 연관하여 저장용량(Storage Capacity)과 관련된 고밀도화와 대용량화 기술 영역, 데이터 접근시간(Access Time), 및 데이터 전송률(Data Transfer Rate)과 관련된 시스템 고속화 기술 영역 및 시스템 가격(System Cost) 측면과 관련된 시스템 저가화 기술 영역의 세 가지 기술 영역으로 대별할 수 있으며 고밀도화 및 대용량화 기술 영역과 관련된 핵심 기술은 고용량 저장매체의 함성, 제조 및 평가 기술, 홀로그램 데이터 대용량 기술, Pixel Matching 기록/재생 기술, 고성능도 광신호 검출 기술 및 오류 전용 기술로 구성되며, 시스템 고속화 기술영역과 관련된 핵심 기술은 초정밀 시스템 시보 센서 기술, 구동 Mechanism 접착 및 신뢰성 확보 기술, 고속 디지털 신호 처리 기술 및 기록/재생 데이터 포맷 기술로 구성되며 시스템 저가화 기술영역과 관련된 핵심기술은 미디어 대용량 제조 및 복제 기술 및 시스템 통합 기술로 구성된다. 이에의 표(1)에 홀로그램 데이터 스토리지와 관련된 핵심 기술의 내용을 분류하였고 이러한 핵심 기술별 최적단 개발 동향 및 발전 전망을 표(2)에 일관하였다.

5. 국내외 연구 개발 동향

정보 저장장치의 기록용량은 기록밀도에 의해 결정되는 것으로, 현재 대표적인 정보 저장장치인 HDD(Hard Disk Drives)에서 사용되는 정보기록 방식인 자기기록 방식은 정보 기록 매체의 열적 붕괴 현상에 의하여 발생하는 Super Paramagnetic Effect에 의 하여 기록 밀도의 한계가 ~100Gbits/in² 정도로 예측되고 있어, 2010년도 현재 대용량 정보 저장장치에 요구되는 성능에 대응하기 어려운 실정이다. 이에 따라 향후 거대한 시장규모를 형성할 대용량 정보저장장치 시장에 확대 진입을 하기 위해서는 새로운 기록/재생 방식을 기초로 한 차세대 정보 저장 기술이 요구되고 있다. 그러나, 차세대 대용량 정보 저장장치의 경우, 차세대 기술의 불확실성, 빠른 기술 혁신 변화 및 대규모 개발 투자비 등의 문제 때문에 개별 기업 또는 연구기관이 단독 개발하기에는 위험부담이 커지면서, 미국 및 일본 등의 이관아 기
표 1. 홀로그램 데이터 스토리지의 핵심기술 분류 및 내용.

<table>
<thead>
<tr>
<th>기술영역</th>
<th>성능지수</th>
<th>핵심 기술 내용</th>
<th>요소기술</th>
</tr>
</thead>
</table>
| 고밀도화 및 대용량화 기술 | Storage Capacity (Storage Density) | 고효율 저장물질의 합성, 제조 및 평가 기술
고성능 광 플라크 합성 기술
광 품질 우수 원자 및 재료 기술
저장물질 기록 재생 특성 평가 기술
고성능 광플라크 단면성 성장 기술
광플라크 단면성 고정도 기술 | 체적 홀로그램 기록재생 기술
기록 시간 분배 기술
홀로그램 빈도수(Volatility) 방지 기술재생 기술
가변 파장 정렬 기술
광선 양 변조 기술/레이저 웅장 변조 기술 |
| | Pixel Matching 기록재생 기술 | 고성능 광학 부품 설계 기술
광학/제조 Architecture 설계 기술
위상 공학(Phase Conjugation) 재생 기술
SLM, CCD 등 핵심 소자 토크스 회로 기술
광학적 조립, 조정 및 평가 기술 | SLM, CCD 등 핵심 소자 특성 분석 기술
재생 특성이 기술 및 평가 기술
시스템 모델링 및 시뮬레이션 기술
2차원 Modulation Coding 기술
재날 동화 기술
재날 Noise 제거 및 SNR 개선 기술 |
| | Access Time | 고성능 레이저 밸런스 기술
고성능 모터화 기술 및 방선 기술
응용 광학 레이저 밸 변조 기술 | 초정밀 시스템 세부 제어 기술
고정밀 Tracking 및 Addressing 기술 |
| | Data Transfer Rate | 고성능 인터페이스 기술
고성능 전송 속도 및 보안 기술
고성능 전송 및 보안 기술 | 고속 데이터 전송 기술
High Frame Rate CCD, LCD 활용 기술
고속 Tracking 및 Addressing 기술
고조화 데이터 전송 및 보안 기술 |
| | System Cost | 미디어 레이저 제조 및 복제 기술
미디어 양산 공정 기술
Master 홀로그램 제작 기술
체적 홀로그램 제조 및 복제 기술
미디어 Substrate 제조 기술 | 미디어 레이저 제조 기술
시스템 설계 및 제조 기술
시스템 성능 및 평가 및 분석 기술
시스템 신뢰성 및 내구성 확보 기술
양산 자동화 기술 |
| | System Cost | 시스템 통합 기술 | 미디어 레이저 제조 기술
시스템 설계 및 제조 기술
시스템 성능 및 평가 및 분석 기술
시스템 신뢰성 및 내구성 확보 기술
양산 자동화 기술 |
<table>
<thead>
<tr>
<th>기술 영역</th>
<th>최첨단 동향</th>
<th>기술 방안 전략</th>
</tr>
</thead>
<tbody>
<tr>
<td>고호응 저장</td>
<td>두께 500nm 긴 광 플로피 patio Sample 개발</td>
<td>현재 광물성 결정은 Optical Quality, Dimensional Stability 및 고밀도 모터 기록을 위해 미디어 두께를 늘리는 측면에서 드러난 장점이 있으나, Sensitivity, Dynamic Range가 매우 낮아 현재의 상태로는 양상화 시스템에 적용하기에는 한계가 있는 특성을 개선하는 방향으로 연구개발이 진행될 전망.</td>
</tr>
<tr>
<td>물질 합성</td>
<td>패턴 형성은 가능한 Photorefractive Polymer 개발 중</td>
<td>정밀 부적합을 위해 Fixing 기술 개발</td>
</tr>
<tr>
<td>재조 정형 및 평가 기술</td>
<td>광물성 결정의 밝은 특성 개선을 위한 Stoichiometric 공정 개발</td>
<td>광물성 결정의 밝은 특성 개선을 위한 Dark Decay를 방지하기 위한 Fixing 기술 개발</td>
</tr>
<tr>
<td>홍로 그램 데이터</td>
<td>두께 8mm의 광물성 결정인 LiNbO3:Fe와 같은 두께로 기록을 수행하여 저장밀도 250Gbit/in² 구현</td>
<td>두께 300mm의 광 물리성과 Peristrophic 다중화 기법을 사용하여 저장밀도 50Gbit/in² 구현</td>
</tr>
<tr>
<td>저주파 기술</td>
<td>Polarized Collinear Holography 기법을 사용하여 CD 크기에 1TB급 저장용량을 구현하는 기술을 개발 중</td>
<td>Phase Correlation Multiplexing 이라는 새로운 다중화 기법 개발</td>
</tr>
<tr>
<td></td>
<td>Laser Micro-hologram의 다중기록에 의한 고밀도 기록기술 개발</td>
<td>Micro-hologram의 다중기록에 의한 고밀도 기록기술 개발</td>
</tr>
<tr>
<td></td>
<td>홍로 그램 기록시 Cross-erase 문제를 개선하기 위한 Two-step-gated 기록 자료 기술 개발</td>
<td>학과 그램 기록시 Cross-erase 문제를 개선하기 위한 Two-step-gated 기록 자료 기술 개발</td>
</tr>
<tr>
<td></td>
<td>Gray Scale 기록 자료 기술 개발</td>
<td>Gray Scale 기록 자료 기술 개발</td>
</tr>
<tr>
<td></td>
<td>12.8mm Pixel Pitch의 SLM을 이용한 1Mbit/Page급 Pixel Matching 기록 개발</td>
<td>12.8mm Pixel Pitch의 SLM을 이용한 1Mbit/Page급 Pixel Matching 기록 개발</td>
</tr>
<tr>
<td></td>
<td>Pixel Matching의 Auto-alignment 기법 개발</td>
<td>Pixel Matching의 Auto-alignment 기법 개발</td>
</tr>
<tr>
<td></td>
<td>Over-sampling 기법 개발</td>
<td>Over-sampling 기법 개발</td>
</tr>
<tr>
<td></td>
<td>Phase Conjugation Readout 기법 개발</td>
<td>Phase Conjugation Readout 기법 개발</td>
</tr>
<tr>
<td></td>
<td>Modulation Coding 공정 개발</td>
<td>Phase Conjugation Readout 기법 개발</td>
</tr>
<tr>
<td></td>
<td>Adaptive Thresholding 기법 개발</td>
<td>Phase Mask, Axion, Apodizer 등 광물성 결정용 핵심소자 개발</td>
</tr>
<tr>
<td></td>
<td>Block Modulation Code, Strip Code 등 2차원 Modulation Coding 기법 개발</td>
<td>Block Modulation Code, Strip Code 등 2차원 Modulation Coding 기법 개발</td>
</tr>
<tr>
<td></td>
<td>Pixel Mis-alignment 보상 기술을 이용한 SNR 개선 기법 개발</td>
<td>Pixel Mis-alignment 보상 기술을 이용한 SNR 개선 기법 개발</td>
</tr>
<tr>
<td></td>
<td>Pre-distortion 기법, Inverse Filtering 기법 등 SNR 개선 기법 개발</td>
<td>Pre-distortion 기법, Inverse Filtering 기법 등 SNR 개선 기법 개발</td>
</tr>
<tr>
<td></td>
<td>Zero-forcing, LMMSE Equalization 기법 등 채널 등화 기법 개발</td>
<td>Zero-forcing, LMMSE Equalization 기법 등 채널 등화 기법 개발</td>
</tr>
<tr>
<td>코인쉬 평화동</td>
<td>Reed–Solomon Code 등 기존 오류 정점을 사용한 코딩 기법의 성능 개선 기술 개발</td>
<td>기 개발된 Reed–Solomon Code로서 중심으로 성능 개선 연구개발이 추진될 전망.</td>
</tr>
<tr>
<td>잠금 기술</td>
<td>Turbo Code 등 새로운 오류정점을 사용한 코딩 기법의 성능 개선 기술 개발</td>
<td>오류정점 관련 새로운 알고리즘의 탐색 연구도 함께 진행될 전망.</td>
</tr>
</tbody>
</table>

표 2. 핵심기술별 최첨단 개발 동향 및 발전 전망.
<table>
<thead>
<tr>
<th>기술영역</th>
<th>최첨단 동향</th>
<th>기술발전 전망</th>
</tr>
</thead>
<tbody>
<tr>
<td>초정밀 시스템</td>
<td>Sub Hologram을 이용한 Servo 기법개발</td>
<td>재장 미디어 내에 서보 제어를 이용한 신호를 이용한 방법론의 개발과 재생시 서보 미디어 신호를 검출하는 Servo Strategy의 개발이 필요하다.</td>
</tr>
<tr>
<td>서보 제어 기술</td>
<td>1/1000 Degree급 범위내의 레이저 빔 현장 기술 개발</td>
<td>현재 중계사항의 기술 개발이 필요하여, 향후 기술개발이 진행될 것으로 전망.</td>
</tr>
<tr>
<td></td>
<td>Continuation 기술 개발을 위한 Synchronization 제어 기법 개발</td>
<td>현재 기술개발은 Wobble 로시기법 개발</td>
</tr>
<tr>
<td></td>
<td>Stepping Motor의 반복 구동 정밀도 확보 기술 개발</td>
<td>기술개발의 진전과 함께, 향후 기술개발이 진행될 것으로 전망.</td>
</tr>
<tr>
<td></td>
<td>DVD와 Upper Compatibility를 갖는 흐름학과 디스크 제어 기술 개발</td>
<td>기술개발의 진전과 함께, 향후 기술개발이 진행될 것으로 전망.</td>
</tr>
<tr>
<td>구동 Mecha</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td>점적화 및 신뢰성</td>
<td>Cartridge 미디어용 Disk Loading Unit 개발</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td>확보 기술</td>
<td>광학적 소형화용 MEMS Scanning Mirror 개발</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td></td>
<td>광학적 소형화를 위한 Low Aberration 단초형 Fourier Lens 개발</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td></td>
<td>Laser Diode Array 및 Phase Conjugation Readout 기술을 이용한 Compact, 흐름학과 메모리 모듈 개발</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td>시스템 고속화 기술</td>
<td>응용형 상호 소자 이용·초소형 초고속 흐름학과 ROM 시스템 개발</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td></td>
<td>SLIM으로 2000 Frame Rate를 갖는 DMD 모듈을 적용한 시스템 개발</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td></td>
<td>1000 Frame Rate급의 흐름학과 메모리용 반시계 LCD 모듈 개발</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td></td>
<td>CMOS 기술을 이용한 고속 신호 처리용 재생 출력 검출 소자인 Active Pixel Array Detector 개발</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td></td>
<td>1000 Frame Rate 급의 디지털 CCD의 고속 신호처리 기술 개발</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td>고속</td>
<td>PCI-VME Bridge를 이용한 초고속 인터페이스 기술 개발</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td>디지털 신호 처리 기술</td>
<td>FPGA를 이용한 Channel Encoder 및 Decoder H/W Board 개발</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td></td>
<td>시스템 End-to-End 데이터 전송을 10Gbps급 빠른 신호처리 기술 개발</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td>계</td>
<td>16채널 Modulation, FEC 보장중 신호처리 기술 개발</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td>소중고속 기술</td>
<td>10Gbps급 재생 신호 검출 기술 개발</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td></td>
<td>Pulsed Laser를 이용한 초고속 기록 재생 기술 개발</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td></td>
<td>고속 기록을 위한 High Sensitivity 1000cm/J 규 환류러 기법</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td>데이터 포맷 기술</td>
<td>DEPOM(Data Encoding for Page-Oriented Memory)이라는 Working 그룹 활동</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td></td>
<td>데이터 포맷 연구 초기 단계</td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td></td>
<td></td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td></td>
<td></td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td></td>
<td></td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
<tr>
<td></td>
<td></td>
<td>흐름학과 디스크 흐름학과 메모리용 Disk Drive Unit 개발</td>
</tr>
</tbody>
</table>

단위: Cm/J
테마기획

기술영역
- 미디어
- 대량
- 제조
- 및
- 포맷
- 기술

시스템
- 저작권
- 기술

동합
- 기술

<table>
<thead>
<tr>
<th>기술영역</th>
<th>최첨단 동향</th>
<th>기술발전 전망</th>
</tr>
</thead>
<tbody>
<tr>
<td>미디어 대량 제조 및 포맷 기술</td>
<td>Zerowave이라는 고효율 광학리를 이용한 양성 공정 기술 개발</td>
<td>현재 광물성 단일공기 절제 성장 및 기공에 요구되는 제조 비용이 높아 절단기술 개발을 전환하고, 광 물리학과 제조 공정 상 제조 비용이 적절하게 미디어 단가 축소에서 앞으로도 개선될 가능성이 있다고 한다.</td>
</tr>
<tr>
<td>포맷 기술</td>
<td>Packaging용 Substrate를 이용한 제조 기술 개발</td>
<td>포맷 카드의 ROM 시스템을 위한 재료, 포맷 데이터, 대량 복제 기술 개발, 미디어 대량 복제용 롤러프레임 디스크의 Mastering 기술 및 제작 시스템 개발</td>
</tr>
<tr>
<td>기술발전 전망</td>
<td>고효율 AR Coating 기술 개발</td>
<td>핵심기술 발명으로 시스템 동합된 Prototype 개발 결과를 기반으로 제품화 수준의 기술 개발이 추진될 전망임.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>제조기술 개발의 성능에 따라 기술적 성능을 갖출 수 있는 설계 개발을 도입하는 방향으로 연구 개발이 추진될 전망임.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>시스템 저작권 기술을 위해서는 핵심부분의 저작 권반호 및 기술 표준을 체계와의 유기적 일산화물 연구가 추진될 전망임.</td>
</tr>
</tbody>
</table>

술 선진국에서는 정부의 개발 자금 지원 하에 여러 기업 및 연구 기관들의 산학연 공동 연구 콘소시엄을 결성하여 공동 연구를 추진함으로써, 해후 21세기의 저작권 저작권 전파를 선정하기 위해서 차세대 대응형 저작권 저작권의 연구 개발을 수행하고 있다.

앞서 기술학 박사와 같이 저작권 저작권의 저작권 요구 확정화 및 2005년 초에 저작권 저작권의 보상형 활성 지시에 저작권 저작권의 수요에 대응해으로 최근 세계 각국에서 큰 주목 하에 연구되고 있는 기술이 롤러프레임을 이용한 사장장치에 쓰이는 HDDS(Holographic Digital Data Storage)이었다. 미생물을 중심으로 유럽 및 일본 등 기술 선진국에서는 이 분야에 대한 연구가 매우 활발화 되어 있고, 범 국가적 차원에서 점진적으로 투자를 하고 있는 상황이다. 미국의 경우 IBM, Lucent Technologies를 중심으로 각 개별 기업 별도로 상용화에 근접한 Prototype의 개발이 이루어지고 있다. 그러나 초고속, 대용량의 성능을 갖는 HDDS의 개발 및 본격적인 상용화를 위해서는 현재 보다 우수한 저작장치의 개발 및 데이터 다중화 방 법과 신호처리 기술의 개발이 시급히 요청되고 있다. 이에 따라서 미국의 경우는 HDDS를 전략적으로 개발하기 위하여 위의 NSIC 산하에 롤러프레임을 이용한 사장장치의 개발 과제인 HDSS(Holographic Data Storage Systems) 프로젝트의 완결성 성장물을 개발하기 위한 PRISM(Photorefractive Information Storage Materials) 프로젝트를 정부의 자금 지원 하에 산학연 공동연구가 진행되어 성공적으로 완수될 뿐, 본 연구 결과를 토대로 HDSS를 본격적으로 상용화하기 위한 연구가 미국 내의 각 기업별로 활발히 진행되고 있는 실정이다. 그 외에 미국의 HDSS 및 PRISM 프로젝트에 상세 내역을 열람하였다.

- 미국

이 분야 기술 선도국이며 최고의 경쟁력을 갖춘 미국의 경우, 정부 산하 기관인 DARPA(Defense Advanced Research Project Agency)의 자금 지원 하에 롤러프레임을 이용한 저작권 저작권의 사장장치를 개발하기 위하여 완결성 성장물을 개발하는 PRISM(Photorefractive Information Storage Materials) 프로젝트의 시스템 및 관련 부품을 개발하기 위한 HDSS(Holographic Data Storage System) 프로젝트가 산학연 콘소시엄 형태로 국책과제로 진행되어 왔다.
프로젝트를 통해 고도의 저장기술을 개발하는 새로운 연구를 진행하고 있다. 현재 시스템의 주요 성과로는, 1GHz의 데이터 전송률과 500GB급의 저장공간을 제공하며, 다양한 응용 분야에 활용할 수 있는 혁신적인 기술을 제공하고 있다.

HDSS Project
Holographic Data Storage System
- 목표: 175cm×32장소의, 1GHz의 데이터 전송률과 1500GB급의 저장공간을 제공하는 HDSS를 구현
- R&D진행: PRISM 프로젝트와 미국 정부의 지원을 받으며, 6개년 계획
- 성과: 1GHz의 Pixel Matching 기술 개발
- 1000GB급의 응용 분야의 고성능
- DDS를 포함한 다양한 응용 분야의 고성능
- 1000GB급의 고성능
- 1000GB급의 고성능
- 1000GB급의 고성능

그림 8. 미국의 HDDS개발을 위한 PRISM 및 HDSS 국책 Project 내용 인용.

우리의 연구는 다양한 분야에서 활용할 수 있는 고성능 저장기술을 개발하고 있다. 특히, WORM(Write Once Read Many)형 Removable Holographic Disk는 중요한 기술적 발전을 이끌며, 다양한 응용 분야에 활용될 수 있다. 이는 높은 저장능력과 빠른 데이터 접근 속도를 제공하며, 다양한 분야에서 활용할 수 있는 혁신적인 기술이다.

Lucent Tech.(InPhase Technology)는 최근 Correlation Multiplexing이라는 새로운 다중화 방식 및 포토폴리오 기반으로 한 새로운 저장기술을 개발하고 있다. 저장밀도 50bit/μm²를 실현하였고, 이를 바탕으로, 5.25인치 디스크에 저장용량 125GB, 데이터 전송률 50MB/s급의 높은 성능을 제공한다.

전기전자제조 제16권 제2호(2003년 2월) 15
IBM: IBM은 향후 자기기록 저장장치인 HDD를 대체할 수 있는 차세대 대용량 저장장치로서 HDDS의 가능성에 주목하여 이 분야에 대규모 연구 개발을 진행 중이며, HOST(Holographic Optical Storage Test Platform)라는 저장매체 개발용 범용 평가 분석 장치를 개발하여 포토폴리오 및 광물성 단결정 개발을 의도적으로 추진하고 있으며, DEMON(Digital Holographic Demonstrator)이라는 HDDS 평가 시스템을 개발하여 디지털 신호처리 기술 개발 및 핵심 부품 개발에도 주력하고 있고, 특히 최근에 개발된 DEMON II에서는 Fe가 참가된 LiNbO3에 각도 조절 기록 기술을 이용하여 250Gbits/m2의 초고밀도 기록/재생 기술을 구현하였다[10]. IBM은 HDDS에 관련된 기록/재생 기술, 광학계 설계 기술과 변조코딩기술, 캐내 등장 기술 및 외부정경 교체기술을 포함하는 디지털 신호처리 기술에 대한 다수의 원천 특허를 보유하고 있으며, 양호 HDDS의 상용화 단계에서 첨단질 데이터 포맷의 국제 규격 표준화를 추진하기 위해서 활발히 특허를 출원하는 특허 전략을 펼치고 있다.

Caltech: Periphotonic Multiplexing 기술 및 Spherical Wave Shift Multiplexing 기술의 개발을 통하여 Dupont의 포토폴리오를 재료한 황로그래픽 디스크 시스템을 개발하였고, 현재 포토폴리오 개선을 통하여 100bits/μm2의 저장밀도를 갖는 황로그래픽 디스크에 대한 연구를 진행 중이며, HDDS의 기술적인 진보와 같은 황로그래픽 광바람기(Holographic Optical Correlator)를 응용한 실시간 화상 인식 분야에 대한 연구도 병행하고 있다.

Stanford University: 압축된 양상 및 비디오 데이터를 황로그래픽 데이터 스트리미징의 기록/재생하고 컴퓨터와 인터페이스하는 기술을 개발하고 있으며, Aprilis 사의 ULSH-500이라는 포토폴리오를 기반으로 한 디스크 형태의 황로그래픽 데이터 스토리지 시스템을 개발하여 6Gbits/s의 업 청년 데이터 속도를 구현하였다[6].

Rockwell: 군사용 자동 목표 추적 등의 특수 목적에 사용하는 황로그래픽 데이터 스토리지 시스템을 개발하였으며, ROM(Read Only Memory) 형태의 소형 장량의 황로그래픽 데이터 스토리지 시스템을 구현한 바 있다[4].
유럽
프랑스, 영국, 이탈리아 및 스위스 등이 참여한 범유럽적인 산학연 연구 콘소시엄이 BRITE-EurAM이라는 프로젝트명으로 구성되어 항공우주의 자동물체 인식 장치 및 자동 물체 추적 장치, 공장 자동화용 형상 인식 장치에 응용이 가능한 고고속 홀로그램뷰 디지털 광학장치 및 대량 저장장치를 개발 중이며, 상기 프로젝트의 참여기관으로는 프랑스의 Thomson-CSF, 영국의 British Aerospace, 이탈리아의 DIST, University of Genoa, 스위스의 IMT 등이 참가하고 있다 [11].

일본
현재 CD/DVD 계열의 광 저장장치 시장을 석권하고 있는 일본의 경우 광 저장장치 분야에서의 연구를 유지하기 위한 전략에 따라 그 동안 홀로그램 기반 대량 저장장치의 개발에 다소 미온적인 태도를 취하였으나, 최근 들어 이 분야에 대한 연구개발이 매우 활성화되고 있는 추세이다. 이러한 각국적인 반전의 배경은 홀로그램 대량 저장장치의 성용화가 최근에 미국을 위주로 급진적으로 상승한 폭으로 칭찬되고 있다. 일본의 광 저장장치 업계의 기술력 및 제품력으로 미루어 볼 때 본 기술분야에서 조만간 미국의 수준에 근접할 수 있으리라 판단된다. 본 분야 관련 업체의 동향은 다음과 같다. Sony사는 DVD와 호환 가능한 홀로그램 미디어를 사용한 연구를 중점적으로 수행 중이며 최근 홀로그램의 대량 고속 복제기술 개발하여 이 기술을 기반으로 하는 Holographic-ROM 시스템을 개발 중이고, Optware사 는 DVD와 호환 가능한 Holographic-DROM 시스템을 개발하고 있으며 이와 함께 Pioneer사, Toshiba사, Matsushita사 및 NTT 등은 네트워크 스토리지에 응용 가능한 홀로그램 대량 저장장치에 대하여 연구가 진행 중이다.

내국
내국 기업체로서는 대우전자, 삼성전자에서 차세대 대량 저장장치로 부가가치의 HDDS의 가능성이 주목하여 수년 전부터 이 분야에 대한 기반기술 관련 연구를 진행하여 왔으며, 국내 연구소로서는 ETRI, 대학에서는 강원대, 경희대, 평대대, 부산대, 서

<table>
<thead>
<tr>
<th>개발 참여회사</th>
<th>현재 Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optware</td>
<td>Holographic ROM 시스템 개발 중</td>
</tr>
<tr>
<td>Sony</td>
<td>Holographic Data 복제기술 개발</td>
</tr>
<tr>
<td></td>
<td>Holographic 인쇄 기술 개발</td>
</tr>
<tr>
<td></td>
<td>Sony Form Factor의 홀로그램 DVD 개발</td>
</tr>
</tbody>
</table>

수년 전까지 일본의 Storage 업계의 Major들은 HDDS의 성용화 시장을 앞두고, 기존 연구를 수행하였으나 최근 미국에서의 Breakthrough를 통해 HDS의 성용화 가능성을 더 이상 고려하여 현재 움직임의 연구 개발을 수행 중이며, Optware, Sony 등은 DVD와 호환 가능한 HDS 시스템을 개발하는 등 많은 연구성과를 발표 중.

그림 13. 일본의 HDDS 개발 동향.
올다, 성공관계, 순천대, 아주대, 영남대, 충북대 등
에서 개발적으로 연구가 수행되어 오다가 지난 1999
년 12월에 산업자원부에서 주관하는 국책 사업의 하
나인 차세대 신기술 개발 사업 중 차세대 대용량 정
보 저장장치 개발과제로 선정되어 정부의 연구 개발
자금 지원 하에 산학연 공동사업을 구성하여 본격적
인 연구가 수행되고 있다. 그림(14)에 도시한 차세대
대용량 정보저장장치 개발과제의 HDDS 분과 연구
개발 추진 제도에서 보듯이 과제의 총괄 주관기관은
전자부품 연구원이 맡고 있으며, 참여기업으로는 대
우전자, 삼성전자와 벤처기업인 아이볼 포토닉스가
참여하고 있고, 대학에는 연세 대학과 한양 대
학교가 참여하여 현재 2단계의 1차년도 과제를 활발
히 추진하고 있다.

6. 몇음달

본격적인 멀티미디어 시대의 도래와 함께 고속, 대
용량의 정보 저장장치의 중요성은 날로 증가하고 있
으며, 이러한 기능을 갖춘 저장장치에 대한 시장의 수
요 또한 급증하고 있는 추세이다. 이에 따라서 현존하
는 어떠한 정보 저장장치 보다는 고속, 대용량성의 측면
에서 박탈한 성능을 갖고 있는 홀로그램적 데이터 스토리지의 상용화를 위한 연구 개발이 전세계적으로 활성
화되고 있다. 또한 그 동안 홀로그램적 데이터 스토리지의 상용화에 큰 걸림돌로 생각되어 왔던 최적 저장 플
집의 문제는 그 동안 포트폴리오를 중심으로 많은 혁신적인 개선이 이루어져 상용화가 가능해지는 수준
의 성공을 갖는 포트폴리오의 개발을 통해서 홀로그램적 데이터 스토리지의 상
용화가 가능성을 더욱 높게 만들고 있고, 현재의 개발
추세로 미루어 보면 2003년~2004년 내에 최적 디스
트 형태의 ROM 및 WORM 기능을 갖춘 초기 제품이
동장할 것으로 예측되고 있는 상황이다. 현재 이러
한 홀로그램적 데이터 스토리지의 상용화에 가장 앞
서 있는 곳은 미국이지만, 국내에서도 차세대 대용
량 정보저장장치 개발 국책과제를 통한 정부의 지원
와 개발 참여 기업의 자발적인 연구개발 노력으
로 상당한 수준의 기술을 확보하게 되었으며,
Prototype 제작과 같은 상용화를 전체로 한 가시적인
연구결과의 체계가 대폭 후속 연구를 위한 장래적
研究成果에 반영되어 있으며, 정부의 정책적 지원과 학계 및 산업계의 관련 연
구원들의 노력이 경제된다면, 현재의 CD/DVD계열
의 뒷을 이어갈 수 있는 초입류 상품으로 키워나갈 수 있을 것으로 생각된다.

참고 문헌

