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HIGHEST WEIGHT VECTORS OF
IRREDUCIBLE REPRESENTATIONS OF THE
QUANTUM SUPERALGEBRA {, (gl(m,n))

DoONGHO MOON

ABSTRACT. The Iwahori-Hecke algebra Hi(g?) of type A acts on
the k-fold tensor product space of the natural representation of the
quantum superalgebra i,(gl(m,n)). We show the Hecke algebra
Hi(¢®) and the quantum superalgebra i,(gl{m,n)) have commut-
ing actions on the tensor product space, and determine the cen-
tralizer of each other. Using this result together with Gyoja’s g-
analogue of the Young symmetrizers, we construct highest weight
vectors of irreducible summands of the tensor product space.

0. Introduction

One of the main studies of finite dimensional representation theory of
a semisimple Lie algebra g is constructing all the irreducible g-modules
and explicitly describing how g acts on irreducible modules. Thanks to
the highest weight theory of g-modules, we may attain this by construct-
ing highest weight vectors of irreducible modules.

When g is the special linear Lie algebra sl(n) or the general linear
Lie algebra gl(n) over the complex field C, this problem was successfully
solved by I. Schur in [19] and [20]. Schur investigated tensor product
spaces of the natural representation, which is the irreducible representa-
tion of gl(n) with highest weight €;. He showed the action of gi(n) on
the k-fold tensor product space generates the full centralizer of the ac-
tion of the symmetric group S on the same space. And then, from the
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double centralizer theorem, we may show the associative algebra gener-
ated by actions commuting with the action of gl(n), which is called the
centralizer algebra of gl(n), is a quotient of the group algebra CS, of S.
This result is often called Schur-Weyl duality, and it plays an important
role in understanding the representation theory of gl(n). Schur used the
works on the symmetric group Sy, by F. Frobenius [9] and by A. Young
[22] to study the representation theory of gl(n). For example, the irre-
ducible decomposition of the gl(n)-module V®* can be obtained from
the decomposition of CSy into minimal left ideals via minimal idempo-
tents of CSy, the Young Symmetrizers.

The same approaches were made by A. Berele and A. Regev [3] and
G. Benkart and C. Lee Shader [2] for the general linear Lie superal-
gebra gl(m,n). When g = gl(m,n), the centralizer algebra is again a
homomorphic image of CSg, and we can also use Young symmetrizers
to decompose the tensor product space.

In 1986, M. Jimbo [11] constructed the Drinfel’d-Jimbo quantized
universal enveloping algebra $4,(gl(n)) of gl(n). He also showed the ac-
tion of the Iwahori-Hecke algebra of Type A, Hz(g?), on the k-fold tensor
product space of the natural representation of {,(gl(n)) commutes with
the action of $4,(gl(n)).

In this paper, we continue these preceding approaches. We show
that the action of Hy(g?) determines the commuting action of quantized
universal enveloping algebra i,(gl(m,n)) of gl(m,n), and use the g-
analogue of Young symmetrizers to construct irreducible representations
of 4, (gl(m,n)) and highest weight vectors. Because conjugation is more
complicated in the Hecke algebra than that in symmetric group, one
has various constructions of the g-analogue of Young symmetrizers (see
for example [15], (7], and [10]). In this paper, we use A. Gyoja’s ¢-
idempotents in [10].

The usual trick for proving that the action of the general linear Lie
algebra gl(n) generates the full centralizer of the symmetric group ac-
tion uses the idempotent ) o to construct a projection map onto the

&Sk
gl(n)-invariants. Unfortunately, this method is no longer useful for the
quantum case because such a construction does not yield an idempo-
tent in the Hecke algebra. To show the action of Hy(g?) determines
the full centralizer of {,(gl{(n)), R. Leduc and A. Ram used the path
algebra approach to the centralizer algebra of il5(gl(n)) in [13]. But
their approach requires that the tensor product spaces are completely
reducible Ug(gl(n))-modules. Recently in [1], G. Benkart, S.-J. Kang,
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and M. Kashiwara showed the completely reducibility of the tensor prod-
uct spaces of the natural representation of U, (gl(m,n)) using the crystal
base theory of i,(gl(m,n)). Now we use their result and obtain the full
centralizer of Uy(gl(m,n)) in Section 3.

The other main result will appear in Section 5. We will decompose
the tensor product space to obtain finite dimensional irreducible repre-
sentations of Uy(gl(m,n)) and construct a highest weight vector of each
finite dimensional irreducible representation in the tensor product space
using Gyoja'’s g-analogue of the Young symmetrizers. The multiplica-
tion in the Hecke algebra is more complicated than that in symmetric
group, and this is the main difficulty in obtaining highest weight vec-
tors of irreducible representations of i,(gl(m,n)). We will develop a
technique to resolve this situation in Section 5.

1. The quantum superalgebra ,(gl(m,n))
The general linear Lie superalgebra gl(m,n) = gl(m,n)5 & gl(m,n)z
is the set of all (m + n) x (m + n) matrices over C, which is Zy-graded

by

gl(m,n)y = { <6‘ g) ’ A € Mpum(C), D Mnxn((C)} ,

gl(m,n); = { <g g)

together with the super bracket

[z,9] = 2y — (-1)®yz
for x € gl(n,n)z, y € gl(n,n);, a,b = 0,1. We adopt the convention on
parities that p(z) = a if 0 # = € gl(n)z, a = 0, 1.
We define the supertrace str on gl(m,n) by,

str(z) =TrA—TrD,
A B . .
for z = € gl(m,n), where T'r is the usual matrix trace. The

C D

special linear Lie superalgebra s/(m,n) is the subalgebra,
sl(m,n) = {z € gl(m,n)|str(z) = 0},

of gl(m,n) of matrices of supertrace zero.

Let E;; € gl(m,n) denote the matrix unit which has 1 at (4, 7)-
position and 0’s at other positions. We let I be a set such that I =
{1,2,...,m+n—1}. The Cartan subalgebra b of gl(m, n) is the set of all
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diagonal matrices in gl(m,n), which is the C-span of E;;, 1 < i < m+n.
For ¢ € I, we let H; be

H = {E” — Eiy1,i41 if i #m,

(1.1) s
Em,m -+ Em+1,m+1 if 1 =m.

We denote the dual space of h by h*. Relative to the adjoint action of
the Cartan subalgebra b, gl(m,n) decomposes into root spaces

gllm,n) =h ® Z gl(m,n)q.

ach*
Let €1,...,€n and 61,...,0, be orthonormal bases of R™ and R”
respectively. We will also use convention that €y,41 := 61,...,€men =

0,. The simple roots o; € h* and the fundamental weights w; € h*, for
1 € I, are given by
(1.2) a; =€ —¢€41, 1<i<m-—1,

w;=¢€+ - +E¢€.
A root « is even if gl(m,n)y N gl(m,n)g # {0} or odd if gl(m,n)s N
gl(m,n); # {0}. Hence all the simple roots except a,, are even.

Let P be the Z-span of {e€1,...,€n+n}, which we call the lattice of
integral weights. And the dual weight lattice PV C ) is the free Z-lattice
spanned by F;;, 1 <4 < m+n. We may define the value A(h) for any
A€b® and h € h by

€i(Ej ) = 0ij
and extending it by linearity. This allows us to define a natural pairing
(, ) between b and h* so that

<Hiv aj> = aj(Hi)'

The Cartan matrix A = (aj;)
sl(m,n) (or gl(m,n)) satisfies

I<ij<min—1> Where a; = aj(H;), of

(0 ifi=j#m,

0 ifi=j=m,

(1.4) aj=4-1 j=i—lorj=i+1,i#m,
1 i=m,j=m+]1,

\ 0 otherwise.
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Note that the Cartan matrix A is symmetrizable, i.e., if we define d; for
i €1 by
1 if 1 <i<m,
(1.5) d; = Lo
-1 ifm+1<i<m+n-1,

and if we let D = diag(di,...,dm+n-1) be the diagonal matrix with
diagonal entries d; for i € I, then AY™ = DA is a symmetric matrix.

Now we give a definition of the quantum superalgebra $,(gl(m,n)).
The Serre-type presentations of sl(m,n) (or gl(m,n)) and the quan-
tization of sl(m,n) (or gl(m,n)) were obtained by various authors all
roughly at about the same time (see for example [12], [8], [17] or [18]).
Readers may refer those papers for the presentations of si(m,n). But in
this paper we adopt a definition appeared in [1] to quote results there.

Let q be an indeterminate and let C(g) denote the field of rational
functions in ¢. Let g; := ¢%, where d; is defined in (1.5).

DEFINITION 1.6 ([1]). The quantized universal enveloping algebra
(or quantum superalgebra) ,(gl(m, n)) is the unital associative algebra
over C(q) with generators E;, F; (i € I), ¢" (h € PV), which satisfy the
following defining relations:

¢" =1 for h =0,
guth: = ghighs for by by € PV,
"E; = ¢ Ei¢h for he PY and i€ I,
"F, = g~ Eigh for h e PV and i € I,
diH; _ ,—diH;
E,.FJ — (—l)p(Ei)p(Fj)Fiji = (Sz,J-q————;—IT— for Z,_] (= I,
9 — q;
EE; - (-1)PEREDE.E, =0 if i — j| > 2,
EF; — (—1)PEPEDF R = 0 if i — 5] > 2,
E2E; — (gi+ q; )EE;E; + E;E? = 0if [i — j| = 1 and i # m,
F2F; — (ai+ ¢ VRF;F; + FiFE = 0if [i — j| = 1 and i # m,
E2 =F2 =0,
EmEm—lEmEm+l + EmEm-HEmEm—l + Em—-lEmEm+lEm
+Ep1EnEpn 1By — (q + q—l)EmEm—lEm+1Em =0,
o Pl 1FnFny1 + PP FrnFno1 + Fo1bFmFmy1Fn
+ Fn1FnFon_1Fp — (q + q_l)FmFm—lFm+lFm =0.

The parities are given as p(g®) = 0 for all h € PV, p(E;) = p(F;) =0 for
i #m, and p(En) = p(Fp) = 1.
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From now on, we set k; = ¢%H:. A Hopf superalgebra structure
of Uy(gl(m,n)) is given by the comultiplication A : U,(gl(m,n)) —
Ug(gl(m,n)) @ Ug(gl(m,n)) such that

A(E)=E, k' +1® E;,
(1,7) A(Fz) =F®14+kQF,
Ald") =q" @4,
the antipode S : U (gl(m, n)) — Ug(gl(m,n)) given by
(1.8) S(E;) = —Eiki, S(F)=-k'F, S(¢")=q"

)

and the counit € : Uy (gl(m,n)) — C(q) by
(1.9) e(Ei) =e(F) =0, e(d) =1

A Uy(gl(m,n))-module M is called a weight module if it admits a
weight space decomposition

(1.10) M =P M,,
AeP

where My = {u € M | ¢"u = ¢®Nu for any h € PV}. A weight module
M is a highest weight module with highest weight A € P, if there exists
a unique nonzero vector vy € M, which is called a highest weight vector,
up to constant multiples such that

o M = iy(gl(m,n))va,

e Fivy=0for all i € I and

e ¢"vy = ¢*My, for all h e PV.

We denote the irreducible highest weight module with highest weight A

by V(A).
The set of dominant integral weights is given as
(1.11)
m+n
= {/\= Z M€ | X €L, A1 2 X > 2 Ay A1 > "-2>\m+n}~
i=1

Now we define the fundamental representation of Uy(gi(m,n)). Let
V=V;0Vi =C(q)™ ®C(g)" be a Zy-graded vector space of dimension
(m 4+ n) over C(q). Let T = {t1,...,tm} be a basis of V5 and U =
{uy,...,u,} be a basis of V7 so that the parities of the basis vectors
are given by p(t;) = 0 and p(u;) = 1. Sometimes it is convenient to
write by := t1,...,bp = tn, and by = U1, ..., bpen = ty. The
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fundamental (super) representation (p, V'), p : 44(gl(m,n)) — End(V),
of U,(gl(m,n)) is given by setting

p(E;) = Ejiq1,
p(Fy) = Eipa,

m+n

p(g") = Z ¢ MWE;;.
i=1

(1.12)

It is easy to see that this representation is in fact an irreducible highest
weight module V' (e1) with highest weight e;.

Also we let W = Wy @ Wi = C™ @ C™ be a Zs-graded vector space
over C. Then we may identify V5 = C™ ®¢ C(q) and V; = C" Q¢
C(q). Moreover we also regard V® = W® @ C(q), which has a Z-
grading (V®*)g = (W®*)5®¢ C(q) and (V®*); = (W®*); ®c C(q). Also
we regard End(V®*) = End(W®*) ®c C(q), which has a Z,-grading
similarly. Since ,(gl(m,n)) is a Hopf superalgebra, the tensor product
representation (p®F, V®*) of p is a well-defined super representation for
each kK > 1.

2. The universal R-matrix, the Hecke algebra, and Gyoja’s
g-analogue of the Young symmetrizers

In this section we recall the universal R-matrix of {,(gl(m,n)) which
appeared in [12] and show that there is an action of a certain Hecke
algebra Hy(q?) on V® coming from the universal R-matrix, which com-
mutes with the action of U,(gi(m,n)) on V&*.

Let

8 : Uy(gl(m,n)) ® Ug(gl(m,n)) — Ug(gl(m,n)) ® Uy(gl(m,n))

be given by 6(z ® y) = (—1)P@PWy @ x. We define opposite comultipli-
cation A’ by A’ = 6A.

THEOREM 2.1 (See [12]). There is a unique invertible solution of
parity 0

R =32 ® i € Ug(gl(m,n)) © Uy(gl(m, )

2



8 Dongho Moon

(the completion of Y,(gl(m,n)) ® U,(gl(m,n))) of the equations
q q
A'(z) = RA(z)R™  for all z € Uy(gl(m,n)),
(2.2) (A®id)R = RBR®  and
(id ® A)R = RBR,
where R1?2 = Y z;Qy;®1, R® = 3. 1®x;®y;, and RB =Y 1,01Qy;.

The element R which satisfies (2.2) is called the universal R-matriz.
The universal R-matrix R of #,(gl(m, n)) is given explicitly in [12]. Let
R € End(V ® V') be the transformation induced by the action of R on
V ®V. Applying R to V ® V relative to the basis {b; ® b; | 1,5 =
1,...,m+n}, we may compute the matrix of R in End(V ® V) as
(2.3)

m m+n
R = Z ¢E;; ® Ej; + Z Ei; ® E;;
i=1 i=m+1
+ Z qu,i [029] Ej,j + Z (—1)p(bi)(q2 — l)Ej,i &® Ei,j.
i#] i<j
1<i,j<m+n 1<i,j<m+n

Let R = oR, where 0 : V®V — V ® V is given by (v ® w) =

(—1)PPW)y @ v. Then

(2.4)
m m+n
R=Y ¢E;®E;—- » E,;®E
i=1 i=m+1
+ Y ()PE@E + Y (¢ - 1)Eii ® By,
i) i<j
1<ij<m+n 1<i,j<m+n

Note that the action of End(V @ V) on V ® V is Z-graded, i.e., for
homogeneous elements X ® Y € End(V ® V) = End(V) ® End(V') and
v@w € VRV, we have (X @ V)(v ® w) = (-1)PV PO Xy @ Yw.
And also, the product of tensors is given as (X; ® X2)(Y1 ® Ya) =
(—1)”(X2)p(Y1)X1Y1 ® X,Y, for homogeneous X1 ® X2,Y1®Ys € End(V®
V). By direct calculation, it is easy to see that

(2.5) R4+ (1 - )R = ¢Pidvgy.
Foreach j=1,...,k—1, we let
rj=idY ' @ R@idP" ™" € End(V®H),
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where R operates on the jth and the (5 + 1)st tensor slots. From (2.5)
we know

(2.6) (r; +1id)(r; — ¢%id) = 0.

Furthermore using arguments similar to those in [13, Proposition 2.18],
we have

PROPOSITION 2.7. Each rj commutes with the action of 4,(gl(m,n))
on (V®*). In other words each r; is in Enduq(gl(m,n))(vg’k). Further-
more, the following braid relations are satisfied:

Ty =TT for |1 — j| > 2,

TiTip1T; = Tip1TiTiv1  for 1 <i<m —2.

DEFINITION 2.8. The Iwahori-Hecke algebra of type A, denoted by
Hi(q?), is the associative algebra over C(q) generated by 1,hy, ..., hy_1
subject to the relations

o (B1) hjhj = hjh; if | — 5] < 2,

L] (BQ) hihi+1hi = hi+1hihi+1 for 1 <3 S k— 2,

o (IH) (i + 1)(hs — ¢) = 0.

Notice that Hy(¢?) is a g-analogue of the group algebra CSj, of the
symmetric group Sy, in the sense that, when g is specialized to 1, Hx(q?)
is isomorphic to CS;. Let 0 = s;;84,---s;, be a reduced expression
for 0 € Si, where s; is the transposition (jj+ 1), 1 < j < k — 1.
Then we let that h(o) = hy, - - - hy,. It is well-known that the definition
of h(o) does not depend on the reduced expression chosen for o, i.e.
h(o102) = h(o1)h(o2) if and only if £(c109) = £(071) + £(03), where £(0)
is the usual length of permutation o. From (2.6), Proposition 2.7 and
Definition 2.8, we have the following:

PROPOSITION 2.9. There is a representation
\Ilq : Hk(qz) — Endqu(gl(m,n))(V®k)

of the Iwahori-Hecke algebra Hy(q?) given by h; — r;.

There is also a representation ¥ : CSy, — End(W®F) of the group al-
gebra CSy, which commute with the action of gi(m,n) on W®*, given by
Zy-graded place permutation on simple tensors such that, for w = w; ®



10 Dongho Moon

Qg € WO and 0 = (i j) € Sg withi < j, ow = sgn(o, w)we-1(1) ®
- ® wo-1(k), Where

=1 if p(wi) = p(w;) = 1,

sgn(o, w) = | 1 if P-(wi) # P(w]) and number of wy in Wi,
i< k <7, is even,

—1 if p(w;) # p(w;) and number of wy in Wi,

i <k <, is odd.

\

Note that ¥, is a g-deformation of W.

Write A - & to denote that A is a partition of . Then we denote
by £(\) the length of A, which is the number of nonzero parts of .
Corresponding to A F k is its Young frame having k boxes with \; boxes
in the ¢th row and with the boxes in each row left justified. We let \* be
the conjugate partition of A whose frame is obtained by reflecting that
of A about the main diagonal. Then A} is just the number of boxes in
the jth column of A.

A partition X is said to be of (m,n)-hook shape if A1 < n. We let
H(m,n; k) denote the set of all partitions of £ which are of (m, n)-hook
shape. Note that a partition A € H(m,n; k) may be identified with a
dominant integral weight

A€+ -+ Amem + A0+ -+ A6, €T,
where
Aj = max{\} —m,0} forj=1,...,n

The irreducible representations of Sy over any field F of characteristic
0 are indexed by the partitions A F k. Thus we have

(2.10) CSy =P In,
ARk

where I is a simple ideal of CS), which is isomorphic to a matrix algebra
M, (C). Here dy is the dimension of the irreducible Si-module labelled
by A.

The Iwahori-Hecke algebra Hj, (¢) is the associative algebra over C(q)
generated by 1,ky, ..., hi_; subject to the relations

e (B1) hih; ~I~zﬁ~f|z—~j|<2
e (B )hl h~=h 1hihip for 1 <i <k —2,
o (IHN") (hi +1)(h; — q) = 0.
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The following theorem is well-known to experts. (See, for example, a
remark in Section 1 of {16], Introduction of [21], Section 4 of [6] and
Theorem 3.1 of [14].)

THEOREM 2.11. The Hecke algebra Hy(q) and the group algebra
C(q)Sk of the symmetric group Sy over the field C(q) are isomorphic
as associative algebras.

We also have the following lemma:

LEMMA 2.12. There is an isomorphism between Hy(q) and Hy(q?) as
associative algebras over C(g).

Proof. Let f : Hp(q) — Hi(g?) be given by f(1) =1 and

fhi) = @(Q(l —q) + (1+ q)hy)

for i =1,2,...,k — 1. We extend f by linearity and the property that
f(hiy -+~ hy) = f(hiy) -+ f(hy). Then f is an algebra isomorphism. O

COROLLARY 2.13. The Hecke algebra Hy(q?) and the group algebra
C(q)Sy of the symmetric group Sy over the field C(q) are isomorphic as
associative algebras.

Therefore, the irreducible representations of Hy(g?) are also indexed
by the partitions A I k, and we also have that

(2.14) He(d®) =P I,

ARk
where I} is a simple ideal of Hj(g?) which is isomorphic to a matrix
algebra My, (C(q)).

A g-analogue of the Young symmetrizers is obtained by A. Gyoja in
(10]. A standard tableau T of shape A - k is obtained by filling in the
frame of A with elements of {1,..., k}, so that the entries increase across
the rows from left to right and down the columns. By a A-tableau we
mean a standard tableau T of shape A. Associated to A are two standard
tableaux S, = S;“ and S_ = §,, which we illustrate by the following
example:

ExaMPLE 2.15. If

>
Il
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then
1/2]3]4]5] 1/5/[8 1114
S+=6 71819 ,andS’_:2 9 112
10 111213 3071013
14 4]

Note from the example that the entries of S} increase by one across
the rows from left to right, and the entries of S_ increase by one down
the columns.

Let T be a standard tableau. Let R(T") be the row group of elements
of Sy which permute the entries within each row and C(T) be the col-
umn group of T of permutations which permute the entries within each
column. Now, for A F k&, let

ey =€ = Z h(o),

UGR(S+)

e =e = Z (—¢®) " h(o).

ceC(5-)
Then e, and e_ have the following important properties (see [10]) :
(2.16) h(o)es = erh(o) = ¢* e, for o € R(S,),
(2.17) h(o)e— = e_h(c) = (-1)*@e_  for o € C(S_).

Let S and T be two standard tableaux of shape A - k. We let 0%

denote the permutation which transforms S to 7. We also write o1

(respectively U%, ai) for ogi (respectively agi, agi). For example, if

| 1]2]4]7 14
A= , andT=|3]5]68 |
9110/ 1113
L] 112]
then
, (12345 67891011 12 13 14
+ \1 247 143568 9 10 11 13 12/’
and
r_ (123 4 56 7 89 10 11 12 13 14
9-=\1 3912 25 10 4 6 11 7 8 13 14
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Let T be a standard tableau of shape A - k. Define x1(q) € Hi(q?)
as
_ -1 -1
018 (o) =h(oT) e (1(6T) M h(eT) e (1T
Then there exists a £ € C(q) depending on the shape A of 7" that
zr(q)zr(q) = Ez7(9)-

Now Gyoja’s g-analogue of the Young symmetrizer is defined as

1
yr(q) := EiET(Q)-
PROPOSITION 2.19 (See [10]). The set of all yr(q)’s is a set of prim-
itive idempotents in the Iwahori-Hecke algebra Hi(q?).

Note when g — 1, then yr(q) specializes to the Young symmetrizer
yr corresponding to T in the standard case.

3. Centralizer theorem

In this section we show that the action of Hy(g?) on V®* determines
the full centralizer of {{4(gl(m,n)). First we recall the work by Berele
and Regev.

THEOREM 3.1 (See [3]). The image ¥(CSy) is given by

xy(csk)gccsk/(_ D I,\>’£ P I

ARk AEH(m,n;k)
A¢H(m,n;k)

The representation ¥, of Hi(g?) is completely reducible because
Hy(q?) is semisimple by Corollary 2.13 (see, for example, Section 25.7
of [4]). Moreover, we have

COROLLARY 3.2. The image ¥,(H(q?)) is given by
o (Hi(@)) = Ha(e?) / (® B)= & =
Ak A€ H(m,n;k)
A¢H(m,n;k)
Proof. First we prove

(3.3) dimeqq) (yr(g)(VEF)) > dime (yr (W)

for each standard tableau T. Let vy,...,v € yr(W®*) be linearly in-
dependent vectors over C. For each i = 1,2,...,[, write v; = yrw;
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for some w; € W®. By identifying V& = W® ¢ C(q), we have
vi(q) = yr(Qws, ..., v(q) := yr(g)w; are vectors in yr(q)(V®*) such
that v;(1) = v; for all 4.

We assume vi1(q),...,v;(q) are linearly dependent over C(g). Then
there exist hi(q), ..., hi(g) € C(q) such that

(3.4) hi(q)vi(g) + -+~ + hi(@)ui(g) = 0.

By clearing denominators, we may assume h;(q) € Clg] for all 1 < ¢ < L.
And let 7 > 0 be the largest integer such that (g — 1)" divides h;(gq) in
Clg] for all 1 <4 <. Dividing both sides of (3.4) by (¢ — 1)", we may
also assume that (g — 1) does not divide h;(g) in C[g| for some 1 < j < L.
Then 0 # h;(1) € C, and by putting ¢ =1 in (3.4)

ha(L)vi (1) + -+ + hy(L)vy(1) = 0.

Hence we have v;(1),...,v/(1) are linearly dependent over C, and which
is a contradiction. Therefore, v1(q),...,v;(¢) are linearly independent,
and we obtain (3.3).

Next we have the following inequalities in dimensions;

(m 4+ n)F = dimey(V®) = S dimeg (yr()(VEH)

T: A-tableau
XeH(m,n;k)

(3.5) | > Y dime(yr(W®)

T: )A-tableau
AeH(m,n;k)

= dimc(W®*) = (m + n).

Therefore
dime(VE) = Y dimegg(yr(e)(VE),
T: A-tableau
e H(m,n;k)
and
vek= P ur(@(V®).
T: A-tableau
A€ H(m,n;k)
Now the corollary follows. 0

As a consequence, we have
(3.6) dime (¥(CSk)) = dime(qg) (Tq(Hi(d?))),

because dimc Iy = dimg(y) If = d3.
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Our next goal is to prove that the image W, (Hx(g?)) of Hi(g?) is in
fact the full centralizer Endy, (gi(in,ny) (V®F) of Uy (gl(m, n)) on V®*. The

completely reducibility of i,(gl(m,n))-module V®* and the branching
rule of 4,(gl(m,n))-modules for tensoring by V' = V(e1) are obtained
by G. Benkart, S. Kang and M. Kashiwara (see [1]) using the crystal
basis theory of U,(gl(m,n)):

PROPOSITION 3.7 (See Proposition 3.1 in [1]). The U,(gl(m,n))-
module V& is completely reducible for all k > 1.

THEOREM 3.8 (See Theorem 4.13 in [1]). Let A\g - k be an (m,n)-
hook shape. Then the tensor product V(\g) ® V{e1) has the following
decomposition into irreducible 4,(gl(m,n))-modules:

(3.9) V) ®Via) =P VH,
AEA

where A runs over the set A of all (m,n)-hook shape Young diagrams
obtained from Ay by adding a box to Ag.

Let g be a Lie superalgebra. A g-module V is irreducible if V does
not have g invariant Zs-graded subspace. Note that irreducible modules
appearing in (3.9) do not have any Zj-graded or non-graded subspace
which is #,(gl(m,n))-invariant. Therefore, the Schur’s lemma is still
true in our case:

LEMMA 3.10. Let V(A) and V(u) be any two irreducible {,(gl(m, n))-
module appearing in the branching rule (3.9). Then

Clg) ifA=p,

Endyy, (grmmy) (V(A), V(1)) = {0 if X #

The branching rule of gl(m, n)-modules for tensoring by W = C™@C"
was obtained by Berele and Regev [3], and it is same as (3.9). The
centralizer theorem

(3.11) Endy(gi(m,ny) (W) = ¥(CSy)

for the non-quantum case was also obtained by Berele and Regev [3].
Because the branching rules for quantum and non-quantum cases are
the same, we have from Lemma 3.10 and (3.6) and (3.11) that

dimg(g) Bndy,(gi(mm) (V") = dime Enduy(gi(m,m) (W**)
(3.12) — dime W(CSy)
= dimg(g) ¥q(Hi(g?)).
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Thus, we have arrived at the main result of this section:

THEOREM 3.13. The centralizer algebra of the action of $,(gl(m,n))
on V®* js the image of Iwahori-Hecke algebra Hy(g?) under ¥,, i.e.

Endy (gi(m,n) (V) = ¥o(Hi(g?)).

Moreover the double centralizer theory (see [5, Theorem 3.54] for this
standard result) gives

COROLLARY 3.14. The centralizer algebra of the action of Hy(q?) on
V®k js the image of $l,(gl(m,n)) under p®*, i.e.

Endy 34, (g2 (VE*) = p®* (Uy(gl(m,n))).

4. Symmetric groups and k-diagrams

It is helpful to represent permutations of the symmetric group Sy by
k-diagrams in the rest of this paper. We give a little explanation of
k-diagrams in this section.

Consider a graph with two rows of k vertices each, one above the
other, and k& edges such that each vertex in the top row is incident to
precisely one vertex in the bottom row. There is a natural one-to-one
correspondence between such k-diagrams and elements of the symmetric
group Sg, which is illustrated by the following example:

ExXAMPLE 4.1.

Notice that the ith vertex in top row is incident to the o(i)th vertex in
bottom row.

Let d; and dy be the diagrams corresponding to permutations o
and oy respectively. Place d; below d3 and identify the vertices in the
bottom row of d» with the corresponding vertices in the top row of d;.
The resulting diagram corresponds to the product o102. For example,

G g ?):(12)(23):%_><‘><.

Note that we stack the left element of the product on the bottom of the
diagram and the right element on the top.
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With our identification of a permutation o € Sy with its k-diagram,
the length £(o) is the number of crossings of edges in the k-diagram
identified with 0. And an expression o = s;, - - s;; of o € Sy is reduced
if j = ¢(0). For example, the k-diagram shown in Example 4.1 has 9
edge crossings, and so £(c) = 9, and

(1 2 3 4 5 6\ _
7= 356 1 4 2 = 538452535455515253,

where the product on the right is a reduced expression for o.
Now we may explain the situation when we have ¢(o109) < ¢(01) +
£(02) using k-diagrams as follows: In the following example,

(1) . .:f/ ' I C

the crossings given by the darkened edges disappear in the product, so
we have £(o109) < £(o1) + £(09).

5. Maximal vectors of {,(gl(m,n)) modules

In this section we construct highest weight vectors of ,(gl(m,n))
in V®* explicitly using Gyoja’s g-analogue of the Young symmetrizers.
First we note the following lemma from {10].

LEMMA 5.1 (See [10]). Let T be a standard tableau of shape X - k.
Then there exists a v € C(q) such that

- -1 _ _
ex (h (1)) h(ol) ey =nexh (o) ef-
Now let ﬁ(m,n; k) be

uts vkt s+t=k, }

(5.2) T(m,n;k) := {(Hy V) Lp) <m,l(v) <n, and p, > 4(v)

LEMMA 5.3 (See [2]). There is a bijection between H(m,n;k) and
(m,n; k) given by A — (A!, A?), where

M= ), and A2 = (A2,... %),

such that A3 = max{\} —m,0} for j=1,...,n.
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For a standard tableau T of shape A = (A, A\2) € H(m,n;k), we let
T\ be the subtableau of T of shape A! and let T): be the conjugate
of the skew tableau T'/ T\1. Then we associate to T a simple tensor
wr =v; ® -+ ® vk in VO* which is defined by

v = t if [ is in the ith row of Ty,
LT uj if I is in the jth row of T)2.

Note that the weight of wr is
A=A1e1 4+ + Anem + N30 + -+ 226,

For a partition A € H(m,n; k), we denote wj\' = wg+ and wy = We -
A

EXAMPLE 5.4. Suppose m = 2 and n = 3. Let A = (4,2,2,1,1).
Then A € H(2,3;10).

[
The corresponding pair (A, \?) is given by \' = (4,2) and \? = (3,1)

so that
AH< [, )

E—

Let T be a standard tableau of shape A such that

519 ]

»—Fhl\)v—-

Then

Ta=1]3]slo]  p,=]a]7]10]
216 8 |

®10

Then the simple tensor wr € V" is given as

wr =1t Qa2 Rt Qu; @t Rty @ u; Qus Kt ®uy.
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THEOREM 5.5. Let A be a partition in H(m,n; k) and T be a standard
tableau of shape A = (A1, A2). Let vy = yr(q)h (o) wi. Then v, is a
maximal vector in yr(q)(V®*) of weight A = Aje1 + -+ Anem + A28 +
<o+ + A26,. Hence yr(q)(V®*) = V()), the irreducible i,(gl(m,n))-
module with highest weight A.

Proof. First note that when ¢ goes to 1, v, = yr(g)h (o) wy goes
to a maximal vector yrolw} of yr(W®F) in the classical case (see [2]).
Therefore, we know that v, is a nonzero vector.

Next observe that the weight of yr(g)h (61) w} is same as the weight
of wy, whichis A = Aje1++ -+ A + A381 4 - - + A28, by construction,
where A? = max{A} —m,0}.

Now let us prove that v, is annihilated by p®*(E,) for p € I. First
we note

(5.6) vy =yr(g)h (o) wy
“Lh ()65 (16T D) e (D) (o) g
“Ih (D) e (h (6T)) "k (oT) ¢f uy

: T
(1)1<p<m.

When we apply p®k(Ep) on a simple tensor w = b;, ® --- ® bj,, we
obtain a sum of simple tensors each of which has one tensor slot changed
from w. In our case of 1 < p < m, either ¢p41 changed tot, (1 <p < m)
or u; changed to t,,, because p(Ep) = Ep pt1.

Recall Sy and S} are fixed A-tableaux as given in Example 2.15. We

fix another A-tableau S%. We give an example below and do not bother
to give the precise definition of S5. If

T
|
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then

20345678
9 110/ 11]1213] 14 15
16/ 17| 18/ 19] 20
Sy =

X = [21)25]28/31] 34|
22| 2629/ 32
23/ 2730/ 33
124

Note that the entries in S} increase across rows from left to right for the
first m(= 3) rows, then entries increase down the columns.
Applying Lemma 5.1 for A-tableau T', we have

(5.7) ey (h (af))‘l h(ch)ef =ciesh(o])ef
for some c; € C(g), and for A-tableau S§, we have
(5.8) N (h (0?2))~1 h (Ui’t\)) ey =cpeyh (o)) ef

for some c3 € C(gq). Note we know ¢; and ¢z are nonzero because the left
sides of (5.7) and (5.8) are nonzero when we specialize g — 1. Combining
(5.7) and (5.8) we have

(5.9) ey (h (O'T))_l h (0:{) ey = ce; (h (U§§)>_1 h (O’f_;) ey
for some nonzero ¢ € C(g). Now from (5.6) and (5.9)

1 Ty ,— Ty\\ ! T\ 4, .+
U+ =Eh(‘7—)e,\ (h(02)) " h (o) exuy

» o ‘—1 e}
=ch (UZ) ey (h (af*)) h (ai*) ey wy
(*)
for some ¢’ € C(q). We will show that () is a linear combination of
simple tensors which are killed by p®k(Ep) for 1 <p<m.
For brevity we reduce the notation and write i for b;, 1 <7 < m +n.

And we also write | := [ +m for I = 1,...,n. Then we may write the
simple tensor w;\“ as
(5.10)
ui=1® - ®le2® - ®21--®m - ®m
- ~ v - ~ o N’
Al A2 Am

®T®§®...®Xm+1®T®...®Xm+2®...®T®...®X€(A)'
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Recall that e} = Z h(c). For a fixed o € R(S,), we have h(o)w
oc€R(S54)

is a linear combination of simple tensors which are the same as w;f up
to scalar multiplications except the orders of tensor slots where vectors
are from {uj,...,un} are changed. This is because if o moves entries in
the Ith row of Sy and [ < m, then the action of h(c) on wi does not
create any new simple tensors because R maps t; ® t; to ¢%t; ® t;. And
if o moves entries in the Ith row of Sy and | > m + 1, then h(o)w is
a linear combination of simple tensors which are the same as w}\L up to
scalar multiplications except the orders of tensor slots where vectors are
from {u,...,u} are changed because

2 e
R(u; ® uj) = —quj @ u; + (g% — 1)u; ® u; sz.<]',

—qu; ® U ifi > 7.
Thus €} maps (5.10) to a linear combination of simple tensors such that

(511) 1® - Ql028 - 0210 - QMO - @MOFRFR -+ ®F,
N — Ny - vy W

A1 A2 Am

whose leftmost (A; +--- 4 A tensor slots are the same as those of wy
and vectors in the rest tensor slots are from {uy,...,u,}.

Now the next action is by h (af_*). Note that o—i* is the permutation

which transforms S, to S§. Thus if the permutation ai* acts on the
k-fold tensor space by Zs-graded place permutation, then it maps wj to
Fwss, i.e., it does not change the leftmost (A1 + --- + Ap) tensor slots

and it permutes only the elements 1,...,7 in the tensor w;"". Therefore
the action of the Hecke element A (ai*) on simple tensors of the form

(5.11) produces a linear combination of simple tensors whose leftmost
(A1 + -+ Ay) tensor slots are the same as those of wge and vectors in
the rest tensor slots are from {ui,...,u,}. Therefore we may also write

52 . . .
h ((7 +*) ef{wj as a linear combination of simple tensors such that

(512) 1®---®1020 - Q28 MR - AMOFRFQ------ QF
A ;\' A
1 2 m

just like (5.11).

SX

-1
Our next goal is to show (h (o_ )) maps simple tensors of (5.12)

to scalar multiples of simple tensors which are the same as w except the
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order of tensor slots where vectors are from {u,...,u,} are changed.
Note the simple tensor w) is of the form

wy =1®2® - dmRIR --’l1Ix2®---@m
N e’

(5.13) W
' R2®---R2x---QlR2Q---®1®281Q - Q1.
\ - / N _ N J

(A?)2 2(A2—A3) A1—A2

We note that O'gg maps wgsy to wy by Zo-graded place permutation.

Decompose Ugi into a product of permutations o7, ..., 0y, so that UEK =
Ox, 01 and £ (Ugi) ={(ox,) + - +£(01) as in the followings ways:

First we define a sequence T? = 53, TY T2 ... Th = S of A-tableaux
such that entries of 7" increase by one down the first [ columns, and then
other entries increase by one just like they are in the S§ for the rest of
columns, i.e. entries increase by one across rows for the first m rows
then entries increase by on down the columns. Then, we let o; := U?Ll
forl=1,..., 2. We give an example to explain our idea.

ExaMPLE 5.14. If

| ]
||

!_7—_7
T
= (AL = “—J—;j € H(3,5),

then T° = S5, TY, ..., T® and T7 = S are

1]2]3[4]s]6[7]s (1]8]9 1011121314
19 [10[11]12] 13[ 14] 15| 1215161718 1920
| 181 L (3211222324
31 34) v T =T4125283134 :
6/ 29| 32 5262932
130 33 6 273033

?
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1]8 141516171819 18 ]142021/2223 24
2191202122232 29 [1525 2627 28
, 310252627 5 3/10162930
T* =[4T112831 34 o TP =13T11[1731 34 )
5 122932 5121832
6 133033 6131933
7] 7]
1 8142d26303§r33 1[8]1420 26303234
219 1521,27 31,3 1219152127 3133
13110162228 ., |3]10162228
4 (1117 23 29 v TP =[a 11172329 )
12 lsﬁﬁ 5 121824
131929 6 131925
71

and ogo = 07+ 07.
A

Next we argue ﬂ(agg) ={(on,)+ -+ £(01). First see Figure 1 which
illustrates the decomposition U§§ = o), o1 of Example 5.14 using

k-diagrams (k = 34). Note, from the illustration, that the situation
explained in (4.2) does not happen in the decomposition O'gi =07 01,

because once an entry moves to the left, then it is fixed by the following
series of transformations o; so that it goes straight down, and it does
not produce any further crossings of edges. This is clear from Figure 1.
In general with our construction of o;’s,

f(agi) =Lloy,01) =L ox,) + -+ € o),
and so,
h(agg) = h(ox - 01) = h(ox) - h(o1).

Next, we decompose each o; into a product of transpositions. For
example, a decomposition for oy in Figure 1 is explained in Figure 2. If
each o7 is expressed as a product of transpositions as shown in Figure 2,
then the expression is reduced for the same reason as we have seen
in Figure 1. So Hecke element h(o;) is also a product hj hj, - hj,
which corresponds to the reduced expression o; = sj s, - - - 85, where
s;j = (j j+1). Note that we only exchange i and i —1 or % and ¥ during
the process of applying those transpositions.
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FIGURE 2. Decomposition of o4 into a product of transpositions

Because R maps t; ®t; to qt; ®t; for i < j and u; @ ¢; to gt ® uy,

we have

Thus each (h;)~! in the decomposition of (h (or“_gA

R t;, @t; — q—ltj R for i < 7,

t; ® uj — q‘luj ®t; forall 1,y .

o

-1
)) acts on a simple

tensor of the form (5.12) just like a Zy-graded place permutation except
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S9\) L

for scalar multiplication. Thus we have (h (a_ ) maps simple ten-

sors of the form (5.12) to scalar multiples of simple tensors which are
the same as w) except the order of tensor slots where vectors are from

S -1 S + o+ - .
{uy,...,u,} are changed. Hence (h (o})) h (a@) ey wy is a linear
combination of simple tensors of the form

1R2Q - AMARFR - FRIQ - - AMRA*xR---QF
~—— ~————

(W) (A%)2
5.15
( ) ®-- Q1210 -81R21Q1Q---®1.
2(A2—A3) A1—A2

Let w) be a simple tensor of the form (5.15). Now we will show that
eywh is killed by p®* (E,) for 1 < p < m. The action of $,(gl(m,n))
on V® commutes with the action of Hy(q?), so that p®*(Ep,)eyw) =
ey p®F (Ep)w), . Note p®*(E,)w) is a linear combination of simple ten-
sors 6, such that each 6, has a tensor slot where t, has been changed to
tp—1 or uj has been changed to t,,. If the first case happens, then there
isa (jj+1) € C(S-) such that h;0, = ¢%0, (note R(t; ®t;) = ¢*t; ®;).
So

NS :q‘ze;h]ﬂa
=¢(~1)e) ba-
Hence, we obtain e} 6, = 0 as expected.

If the second case happens, then for some 1 < a,b < k, where a, b are

in the same column of S_, the vectors in the ath and bth tensor slots

are both t,,. Note the vectors between the ath and bth tensor slots are
from {uy,...,un}. Consider a Hecke element

haha+1 -~ ho—ghp_1(ho—2) ™" -+~ (ha) ™" € Hi(g%).
Without loss of generality we assume a = 1. Then
hahat1 - -ho—hp_1(ho—2) ™"+ (ha)  (tm @ Ui ® -+ @ uj ® t)
=q O DR by o1 (U ® - @ Uj @ by @ ty)
=q D P hhars My (U @ QU D by D )
=g (b-aD20b-a2y oy - ® Uj @ tm)
=CPtm @U@ U@ tm),
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which explains that
hahat1 - ho—ahp-1(ho-2) 7"+ (ha) 60 = b
Note ey hj = —ey and €, (h;)~! = —e} if (j j + 1) € C(S-), so that
ex0a = %5 Rahat1 - - Bo—gho—1(hp—2) ™t -+ (ha) 04
= —q_2e;\0a.
Therefore we have e} 0, = 0 again in this case.
As a result we have shown here that p®*(E,)e;w) = 0, and conse-
quently p®*(E,)vy =0 for 1 <p <m.

2)m<p<m+n-1.

This case is somewhat easier than the other case. Note p®*(E,)w)

is a linear combination of simple tensors ,, such that one of up;1 in
tensor slots of wy is changed to up. Then for some (jj + 1) € R(Sy),
hj6o = —6, because R(u; ® u;) = —u; ® u;. Thus,

ej{b‘a = —ejhjea
= —q2e}f€a.
Thus, we have e} 0, = 0, and p®¥(E,)vy = 0 for p > m as expected. [

Now from Proposition 2.19, Theorem 3.13, Corollary 3.14, and The-
orem 5.5, we have

THEOREM 5.16. Let A + k be a partition in H(m,n). Let T be a
standard tableau of shape A. Then 4,(gl(m,n))-submodule yr(q)(V ®*)
is isomorphic to the irreducible {4(gl(m, n))-module V (X). Moreover as
an My (g%) x Uy(gl(m,n)) bimodule

Ve~ @ H'eV(),
A-k
AEH (m,n)

where H? is the irreducible Hy(q?)-module labelled by .
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