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POWER TAIL ASYMPTOTIC RESULTS
OF A DISCRETE TIME QUEUE WITH
LONG RANGE DEPENDENT INPUT

GANG UK HwaANG AND KHOSROW SOHRABY

ABSTRACT. In this paper, we consider a discrete time queueing sys-
tem fed by a superposition of an ON and OFF source with heavy
tail ON periods and geometric OFF periods and a D-BMAP (Dis-
crete Batch Markovian Arrival Process). We study the tail behavior
of the queue length distribution and both infinite and finite buffer
systems are considered. In the infinite buffer case, we show that the
asymptotic tail behavior of the queue length of the system is equiv-
alent to that of the same queueing system with the D-BMAP being
replaced by a batch renewal process. In the finite buffer case (of
buffer size K), we derive upper and lower bounds of the asymptotic
behavior of the loss probability as K — oo.

1. Introduction

Recent traffic measurements resulting from a number of applications
have revealed that there is sufficient statistical evidence of long range
dependence (LRD) in the autocorrelations of the number of packets or
cell arrivals in a time interval [19]. This implies that the autocorrelation
function of the count process decays as a power of the lag time in contrast
to that of the classical short range dependent traffic (e.g., Markovian
models) [9, 11, 26, 27, 28] where the decay of the autocorrelation function
is exponentially fast. There have been a number of works on queueing
analysis with long range dependent arrivals (e.g., see {3, 6, 12, 15, 16, 18,
20, 23, 24, 25] and references therein). Recently, Daniel and Blondia [5]
analyzed queues with long range dependent traffic based on discrete time
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models. They considered the superposition of an ON-OFF heavy tail
source (similar to our model) and a batch renewal source, and obtained
the tail behavior of the queue length distribution when the number of
servers equals ¢, ¢ > 1. Our work generalizes [5] in that we allow a general
correlated batch Markovian arrival process for the case of a single server.

In this paper, we consider a discrete time queue fed by two traffic
sources: an ON and OFF source with heavy tail ON periods and geo-
metric OFF periods and a D-BMAP (Discrete Batch Markovian Arrival
Process). For convenience, we refer to the ON and OFF source hav-
ing heavy tail ON periods as the Heavy Tail source from now on. The
OFF periods of the Heavy Tail source are assumed to be geometrically
distributed. The ON periods of the Heavy Tail source are generated
according to a heavy tail distribution. The Heavy Tail source represents
a long range dependent traffic source.

A good example of a Heavy Tail source is a “continuous” source gen-
erating variable size packets where the interarrival time of packets is
exponentially distributed and the packet sizes have a distribution with
a heavy tail. A “discretization” of such a source (as in ATM networks)
results in a discrete cell arrival process where the OFF periods are ge-
ometrically distributed and the ON periods have a heavy tail discrete
distribution [26]. Here, it is assumed that the link rate to source rate
ratio is unity, i.e., cells arrive consecutively during the ON periods.

For the ON periods of the Heavy Tail source, we use a distribution
which is asymptotically equivalent to a Pareto distribution with a pa-
rameter in the range (2,3) (see the details in section 2). This type of
distributions results in an arrival process with a finite mean, an infinite
variance and a power law covariance function with a Hurst parameter
in the range (1/2,1) [4].

In our analysis, we first study the tail probabilities of the queue length
for an infinite buffer system. Qur analysis is based on a spectral decom-
position method and Tauberian Theorem for power series [7]. Our result
shows that the tail behavior of the queue length distribution is equivalent
to that of the same queueing system with the D-BMAP being replaced
by a batch renewal process, and the asymptotic decay constant depends
only on the average ON and OFF periods of the Heavy Tail source and
the total utilization of the D-BMAP. Our result in the infinite buffer
case is consistent with those in [2, 12], where a similar queueing behav-
ior based on a fluid low model was shown. Next, we consider the same
queueing system except that the buffer size is finite and of size K, and
derive upper and lower bounds of the asymptotic behavior of the loss
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probability as K — 0. Our result shows that the loss probabilities are
asymptotically power-tailed as the buffer size increases, so that buffering
does not reduce the loss probability significantly.

The rest of the paper is organized as follows. In Section 2, we present
the mathematical model for our system and some preliminaries needed in
the analysis. In Section 3, we derive an exact tail probability asymptotic
for an infinite buffer system. In Section 4, we study a finite buffer
system and derive upper and lower bounds of the asymptotic of the loss
probabilities for the system. In Section 5, we provide conclusions.

2. Mathematical description of sources

We consider a discrete time queueing system where the time is divided
into slots of equal size and one slot is needed to transmit a cell in the
system. We assume our system has an infinite buffer fed by two sources:
an ON and OFF source with heavy tail ON periods and geometric OFF
periods (called the Heavy Tail source) and a D-BMAP. Refer to Figure 1.
To describe the D-BMAP mathematically, we introduce a homogeneous
and ergodic discrete-time Markov chain, called the modulating Markov
chain, in which transitions between states of the chain take place only at
the slot boundaries. Denote J;. as the state of the modulating Markov
chain at slot k. We assume that the state space of Ji is {0,--- ,M}.
Given that the modulating Markov chain is in state i, the probability
generating function (P.G.F.) of the number Dy of cells arriving in slot
k + 1 with a transition to state j, is denoted by d;;(2), i.e.,

dij(z) = E[ZDHI l{Jk+1:j}]Jk = i]v

where 1g is an indicator function taking the value of 1 (0) if the event
E occurs (does not occur). Then, the D-BMAP is the arrival process
where the probability generating matrix (P.G.M.) of the number of cells
generated in a slot is an (M +1) x (M + 1) matrix D(2) given as follows:

doo(z) doi(2) ---  dom(2)
D(z) = d1o.(Z) dll'(z) : dl]\/{(z
dM(;(Z) dyn(z) -+ dum(2)

For the analysis, we assume that, for sufficiently small € > 0 D(z) exists
for 0 < z < 1+e. It should be noted that the matrix D(1) is simply the
probability transition matrix of the modulating Markov chain. Since we
assume that D(1) is irreducible, we know that D(z) is irreducible for
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F1GURE 1. The Queueing Model

each zin 0 < z < 1. A good example of the D-BMAP is a superposition
of 2-state Markov Modulated Bernoulli Processes (MMBPs) [9, 28].

In the analysis, we assume that the matrix D(z) is diagonalizable
(17], ie.,
(1)  D(z) = G(2)A(2)H(z),G(2)H(z) = H(2)G(2) = I.

Here, I denotes the identity matrix of dimension M + 1 and A(z) is a
diagonal eigenvalue matrix of D(z), given by

A(z) = diag(Xo(2),-- -, Am(2))-

For each eigenvalue \;(2),0 < i < M, let hi(z) = (hio(2), - , him(2))
and g;(2z) = (gi0(2),- - ,gim(2))T be the left and right eigenvectors of
D(z) corresponding to A;(z), respectively. Here the superscript 7' de-
notes the transpose of the row vector. We then have

ho(z)
HE)=| | ,G(z)=(go(2), - ,gm(2))
hy(z)

Without loss of generality, we may assume that Ag(z) is the Perron-
Frobenius eigenvalue of the matrix D(z). We also assume that the eigen-
values and the eigenvectors of D(z) are twice continuously differentiable
in z € [0,1]. Since D(1) is irreducible, nonnegative and aperiodic by our
assumption, we have, by the Perron-Frobenius theory [1]

(2) M) =1,  INOI<L,  i#0,
Let ps be the mean number of arrivals from the D-BMAP during a slot.
Then p, satisfies

d
pPs =T d—D(z) e,

z z=1
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where 7 is the steady state probability vector of D(1) and e is a column
vector of dimension M + 1, all of whose elements are equal to 1.

Next, we describe the Heavy Tail source mathematically. The Heavy
Tail source is defined to be an ON-OFF source having the following
property: while the source is in the OFF (ON) period, it generates zero
(one) cell per slot. The OFF period is assumed to be geometrically dis-
tributed with parameter 1 — p(> 0). The ON period of the Heavy Tail
source is assumed to be distributed according to a discrete Pareto dis-
tribution whose probability mass function {b,},>1 where for constants
a(> 0) and s with 2 < s < 3, b, satisfies

by ~an”®, as n — oo.
Here, k, ~ k], means that lim,_, k,/k}, = 1. Let B(z) be the P.G.F.
of {bn}n217 i.e.,

oo
B(z) =3 by2", for0<z<1.
n=1

From the asymptotic behavior of {b,},>1 we know the ON period has
a finite mean, denoted by E[B], but has infinite variance.

Let p be the total traffic intensity of our system, given by

pE[B]

3) p=p3+1_—;pE—[B]'

For stability, we assume that p < 1. In addition, we assume that
arrivals, if any, occur in the middle of each slot and departures, if any,
occur just before the slot boundary.

For simplicity, we use the notation ¢ = 3 — s(> 0) in the analysis.
Observing that

1-B(z) — (1-2)B'(2) = (1 — 2)* i m{ i bn} PULES

m=1 n=m-+1

and using the fact that b, ~ an™%, it is easy to show, by Theorem 5.1
[4], that

(4) zli,r{lf(l _ z)gl - B(z)(l—_(lz;2 z)B'(2) _ 21“_(01),

which will be repeatedly used in the analysis.
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3. Analysis of an infinite buffer system

In this section, we will obtain the tail behavior of the queue length
of an infinite buffer queueing system fed by a mixture of a D-BMAP
and a Heavy Tail source. In the analysis, we assume that high service
priority is given to the Heavy Tail source, so that all arriving cells from
the D-BMAP are stored in the buffer during ON periods of the Heavy
Tail source plus the following slots. Note that this assumption does not
impact the tail probability behavior of the queue length in the system.

Now, the analysis for the infinite buffer system is performed in two
steps. The first step is to compute the Probability Generating Vector
(P.G.V.) of the number of cells at an arbitrary slot in an OFF period of
the Heavy Tail source in the steady state by discarding all ON periods
of the Heavy Tail source. The second step is to compute the P.G.V. of
the number of cells at an arbitrary slot in an ON period of the Heavy
Tail source in the steady state, and finally by combining the two results
we obtain the P.G.V. of the queue length distribution for our system.

3.1. Derivation of P.G.M. of the OFF periods

In this subsection, we consider the end of slots in OFF periods as
embedded points (see Figure 2). Let {Xy}n>1 be the number of cells in
the system at the end of the n-th embedded point, say sy, in the steady
state. Note then that {Js, }n>1 is the state of the D-BMAP at the end
of the n-th embedded point s,. From our definitions, it is easy to see
that X, satisfies the evolution equation

Xn+1 = maX(Xn - 170) + An+la

where A, 1 denotes the total number of cells from the D-BMAP arriving
between the nth and the (n + 1)th embedded points.

Let C, 41 be the number of cells from the D-BMAP during (sy, $n+1),
given that there is an ON period of the Heavy Tail source between s,
and sp41. Define ¢;;(z) by

¢ij(z) = B[z I{J;,,, = j}|Js, =i, an ON period is in (sn, Sn+1)]-

Let C(z) be an (M + 1) x (M + 1) matrix whose (7, j)-th component is
cij(2). Then, C(z) is the P.G.M. of the number of cells generated from
the D-BMAP during an ON period of the Heavy Tail source plus the
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FIGURE 2. Embedded Points of Our System

following slot. Then

C(z) = }Oi ba[D(2)]"*! = i bnG(2)A(2)" " H(2)
n=1 n=1

= G(z)diag(z bni(2)"THH(z)
n=1

(5) = G(2)A(2)A(x)H(2),

where A(z) = diag(Xi(z)) and Ai(z) = %0 bu[Xs(2)]™

Let A(z) be the P.G.M. of the sequence {(4,,Js,)} whose (i, j)-th
component is

E[ZA7L+1‘[{J57L+1 = j}ljsn = l]
Then, by the definition of A(z) it satisfies
A(z) = pC(z) + (1 -p)D(2)

(6) = G(2)[pA(2)A(2) + (1 - p)A(2)[H(2),
where in the second equation (1) and (5) are used. Let p = E[A,] be
the mean number of arrivals between two consecutive embedded points.

Then, the fact that 7 is also the steady state probability vector of A(1)
yields

. d
(7) p o= mAl2)  e=(1+pE[B])ps
z=1
From (3), (7) and our stability condition p < 1 it follows that
pEB] 1-p(1+pE[B]) 1~

l1—p = 1—-p >0

° " 1+ pE[B] 1+pE[B] ~ 1+pE[B]
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and consequently, we obtain p < 1. In addition, note that {( X, Js,) }n>1
is a Markov chain whose transition probability matrix is of the M/G/1
type as follows:
Ap A1 Ay Aj
Ao A Ay Aj
0 A-O Al A2 .

where (M+1)x (M+1) matrices A;, i > 0 are the Taylor series expansion
of the P.G.M. A(z). Since A(1) is irreducible and p < 1, the Markov
chain {(Xpn, Js,)}n>1 has the stationary distribution [21].

Define X;(2),i =0,--- ,M, by

oo

l

Z) = leiz )
=0

where
z; = P{X =1, Js =i},

and X and J; are the steady state versions of X,, and J;,, respectively.
Let row vectors x; be defined by x; = (xj9,--- ,x1ps) for [ > 0. Then,
the P.G.V. X(z) of the steady state distribution for the Markov chain
{(Xn, Js,) }n>1, defined by

X(z) = (Xo(2), -+ , Xm(2)),
satisfies
X(z) = (z—1DxoA(2)[z] — A(2)]™

= (2 = )x0G(2)[pA(2)A(2) + (1 - p)A(2)]
x[z] — pA(2)A(2) — (1 - p)A(2)]"'H(2) by (6)

PA(DN(2) + (1~ PINi(2) ) H:)
z = phi(2)Ai(2) — (1 = p)A(2) ’

= (2 - 1)xoG(z)diag <
so that

P i phi()Ni(z) + (L —p)Xi(z) .
X;(2) 1) ZZ okGik(z —p)\z( he(2) — (1—p))\i(z)h”( )

(8) = ZZIOszk(Z ( )tz(z)hzj (2),

where
(9) ti(z) = pAi(2)Ai(2) + (1 — p)Xi(2).
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For the analysis we need the following lemma:

LEMMA 3.1.
10 Jim (17t CE IR o
(1) lim (1~ z)al - Xo(z)(1 _(1z)— 2) X0 (2) ~ (p)2° c:I'—(al)’
(12 lm (- itz 21 ~(i); Moz _ 0, y2-o c;I‘_(al)’
19 Hm e { i;b} = T HmP Dt
(14)  lim (1-2)7 ;Z {Z—i—;—z(lz—)} =0, fori#0.
Proof. See Appendix. -

Now we are ready to examine the behavior of X'(z) near z = 1. By
letting ¢ij (Z) = Ek kagik(z)ti(z)hij(z) we obtain

d

zl_igl—(l -2 dz X3(2)
_ - dgij(z) z—1 df z-1
_zligl—(l ) ;{ djz t(z)+¢”() Z{Z*ti(z)}}
o d = 1
= Jim do;()(1 ) ;{Tto—r)}
2—0 o

= Z:EGkQOk(l)tO(l)hOj(l) ( fpts/ (1))2 o 1) by (13)

: 0

2—0 a
= ZkahOj(l)(l gptsg(l))Q Sr_(? since gox(1) = tp(1) = 1
k

2—0o al(o
=(1-p) }(L"’(lzg’ (”15))2 SF_( 1) since 3 @ok = 1 — f

— hO]( )pps aP(O')
T-5 s-1°

Here, in the second equation we use

(16) 1-(1) =1~ p(L+pE[B]) =1—5
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and d¢”( ) < 0o for z € [0,1] to have
d z—1
. e d 21
zligl—(l 2 dzd)”(z)z —t;(2)
We further use (14) to have
. - d 1-2 _ .
zl_lgl_(l - z) ¢”(z)dz {m} =0, i#0.

In the last equation, we use (16) again.
For later use, we need the following lemma.

=0,i=0,---, M.

LEMMA 3.2. The asymptotic behavior of the tail probabilities of X
is
s—1

appg 2—s
Xpe ~ n .
g;k (1= ps(L+ pE[B]))(s — 1)(s — 2)

Proof. Since > . hg;(1) =1, from (15
7 Y7

1) Jm (-2 S X(e = lim (1- 2P e
P al(o)
1—p)s—1

Hence, by Theorem 5.1 we get

n 2—0
pp al (o)
k ~ 3 .
ke~ (T T s 1"

From Lemma 5.2 we get

pps aF( ) o o-1
Zxke -p)r (a+1)s—11—an '

Then our lemma immediately follows from the fact that c =3 —s. O

2. Deriving P.G.M. for ON periods

In this subsection, we derive the P.G.V. of the number of cells during
ON periods of the Heavy Tail source. Let Y be the random variable
representing the number of cells at the end of an arbitrary slot in ON
periods in the steady state, and Y(z) be the P.G.V. of (Y, J;) where
Jy is the steady state version of J;, and {J;, } is the sequence obtained
from {J,} by considering it only at the end epochs {¢,} of slots in ON
periods (similarly as we obtained the sequence {J, }).
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By the GASTA property [8], we have

1

‘{(Z) = [XO Z-*l 4‘)( j{: [

Z bk} D(z)"

n=1 k=n

= E[lB] [xo(z — 1) +X(z)]z {Z bk:I G(2)A(2)"H(z)

n=1 Lk=n
_ [1][x0 1)+ X(z) dzag(ZZbk)\ )
n=1k=n
18 = pgbolz - )+ XEIGEAGHE)

where _/:X(z) = diag(/\:i(z)) and );(z) =3 > e bedi(2)™
As in subsection 3.1, we need the following lemma to examine the
behavior of Y'(z) near z = 1.

LEMMA 3.3.
i d z ,al'(0)
(19) zl_lgl_(l —2)° d—zA o(2) = (ps)*~ ST 1
(20) tim (1 - 2)7 dii (2)=0,  fori#0.
Proof. See Appendix. O

Now multiplying a column vector e on both sides of (18), we obtain

1mewZZmMMMw
ZXJ(Z Zzgm ’\ (2)hir(2)
= E[B] z - 1) Xj:xgj;;gij Z))\i Z)hik z)

1
(21) +m zj: {Zg()] z)hor(2)

+Zzgm X zk Z)}

1#0 k

Y(2)e =
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Combining (19), (20) and (21) yields

d
] —
z—lgl—(l Z) dz

- 53] 2. {;gojmfo(l)hw(” i (127 X0

—Y(z)e

+ X;(1)go; (1)) hok(1) Jim (1 - Z)U%/\zo(z)}

k

ZZZ%, DAWh(1) lim (1= 2)7 2X;(2)

7 #0 k

= ——137] Z {Z Zgij(l)ji(l)hik(l) ZEI{I.U - 2)0%)(1'(2)
b i k
(22) + X0 (1) Jim (1= 2)° %)}
~ 5757 0 FIB) lim (1 - 27 2-X,()

+ E[lf] ;Xju) lim (1 — z)"zl%fo(z)

z—1-
1 d 1 4 _,al(o)
E[B] EJ:EB] Jm Q-2 X+ grges "1

Here, in the first equation we use the facts that
lim, 1~ (1= 2)° £ { g (2 = 1) 5, 205 £ T gis(2)(h(2) } = 0
lim, ,;-(1 — Z)am(z 1) 325 X;(2) 2o £ {g0(2)hok(2)} Ao (2)

lim, - (1~ 2)7 gy 5, X5(2) Lo i e {9ia (N2 >}=o-

In the second equation we use the fact that Y, hox(1) = 1, and in the
third equation we use the fact that

Y Y g MADR() = (GOALHO)e),
1 k

= S D)%) =D b= E[B],

n=1k=n n=1k=n
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and go;(1) = 1. In the last equation, we use »_; X;(1) = 1 and (19).
3.3. Tail asymptotic

In this subsection, by combining the results in 3.1 and 3.2 we derive
the tail behavior for our system. For doing this, let Q(z) be the P.G.F.
of the number of cells at the end of an arbitrary slot in the steady state,
and q; be the probability that there are k cells at an arbitrary slot in
the steady state. Then, by investigating {X, J;} and {Y, J;} it is easy

to show that
_ 1 pE([B]

To examine the tail behavior of the queue length, we first investigate
the behavior of Q’'(z) near z = 1. From (17), (22) and (23),

lim. (1 — z)”%Q(z)

lim.
WI;TIT Jim (1~ Z)U’j—zx(z)e
+ 2B lim (-2 Y (e

e = E[Bl]“l Tim (1 2)7 =X (z)e
" Eﬁ%ﬂ {E[B] Jm (1 -2)7 . S X()e + pi—o%r—(_‘fl)}

. d X p 1-00L(o)
zl—»l 1—(1 2 dz (2)e pE[B] + lps s—1

p(ps)>~7 al'(0) p —s0L'(0)
T 1-p s—1 +pE[B]+1(ps)1 s—1

__ P (ps)*~7 o\ al'(9)
~pE[B]+1{ 1—p + (e }s~1‘

Let a constant ¢ be defined by

I (ps)*~7 —o | al'(o)
C”pE[B]H{ 1—p +(bs)’ }s—l'

Then, by Theorem 5.1 we have

qu’“ T+ 1) +1) "
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from which, by using Lemma 5.2, we finally get

( o o—1
qu I‘(U—I—l)l-an

k>n
(3 — S)C 2—s
(s—2T(c+1)

Recalling o = 3 — s, we have our main result.

THEOREM 3.4. The asymptotic behavior of the tail probabilities of
our system is
)2—0

a p (ps AU
;qw(s—l)(s—%pE[B]H{ 1-p +(ps)! }n2 .

REMARK 1. Our result above shows that the correlation in the D-
BMAP does not have any impact on the tail behavior of the buffer dis-
tribution. That is, our result is identical to that reported in [5] assuming
i.i.d. batches (i.e., a batch renewal process).

4. Finite buffer system

In this section, we consider a system with a finite buffer of size K,
and derive lower and upper bounds on the loss probability asymptotic
as K — oo. Similar studies include Jelenkovic [13] who considered the
loss probability asymptotic behavior of the GI/GI/1 queueing system
under subexponentiality and later Jelenkovic and Momcilovic [14] stud-
ied the asymptotic loss probability in a finite buffer fluid queue with
heterogeneous heavy tail ON and OFF processes.

The arrival processes are the same as given in Section 2. For the
analysis, as in Section 3 we assume that high service priority is given
to the Heavy Tail source, so that all arriving cells from D-BMAP are
stored in the buffer, if possible, during ON periods of the Heavy Tail
source plus the following slots. Note that this assumption does not have
any impact on the loss probability of the system.

For a finite buffer system, let X,, be the number of cells in the (finite)
system at the n-th embedded point s, introduced in subsection 3.1.
Then the evolution of the queueing system {(X,, J;,)} is defined by the
following Lindley equation:

Xn+1 = min{max(X,, — 1,0) + Ap41, K}.
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To go further, we need the following theorem which was shown in [10]
under the following two assumptions. Let d;;(z) be defined as in Section
2. We assume that

dij(0) =0, 0<i<M,j#M,

and that the total offered load p is less than 1. Note that, in [10]
they assumed that d;;(z) depends only on j, but this is not needed in
deriving the following theorem. The physical interpretation of the above
assumption is that there is only one state, say M, for which the source
transmits no cell.

Recall that x; = (z0, - ,zim), 2 = P{X = [,Js = i} for the
infinite buffer system. We then have {10]:

THEOREM 4.1. The loss probability P s given in terms of xy, :

loss
P _ (1= 0) D herer1 XkAoe
loss — ~ .
P hmo ¥k Ace

From now on we assume our system satisfies the above two assump-
tions. Then, observing that

min(Ap)ime < Age < max(Ag)ipe,
1 1

we have

1 — 5 min:(Ao)isr 2o pf+1 XK€ < pt¥) o L= pmaxi(Ao)in Y—x1 Xk®

(25)

— " loss = ~

max;(Ao)ine K xie p mini(Ao)iny TF xpe
In addition, by Lemma 3.2 we have
> k=K1 Xk€ S l
B 70 S me
k=0 "~k I=1 \k=K+1
s—1

3 appy
(26) T (= +pEB))(s - 1)(s - 2)

From (25) and (26) we obtain

K275 4 o(K2“s).

THEOREM 4.2. The cell loss rate PLE)I:S) satisfies

. K
mlni(AO)iML< lim Pl(oss) < maXi(AO)iML

max; (Ag)inr K—oo K275 = min;(Ag)ing

where a constant L is given by
_ 1—ps(1 +pE[B]) appy ™!
p(L+PEB]) (1-p,(1 +pEG))(s—1)(s—2)
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REMARK 2. As a special case, if we have a renewal arrival process
instead of the D-BMAP [5], Theorem 4.2 gives an exact asymptotic for
the loss probabilities as the buffer size goes to oo.

5. Conclusion

In this paper, we provided an exact asymptotic expression on the tail
probabilities of a queue with an infinite buffer fed by a superposition of
a Heavy Tail source and a D-BMAP. In this case, we showed that the
tail behavior of the queue length distribution is equivalent to that of
the same queueing system with the D-BMAP being replaced by a batch
renewal process. The impact of the D-BMAP is depicted only through
its mean.

We gave upper and lower bounds of the asymptotic of the loss proba-
bilities for a queue with a finite buffer under the same traffic environment
as the buffer size goes to oc.

Appendix

A.1. Proof of Lemma 3.1

The equation (10) immediately follows from our assumption that
Ap(z) and Aj(z) are finite and continuous in [0, 1].
Noting that

1—Xo(2) — (1~ 2)% (2)
= 1- ):0(2:) - {1 - )\o(z)}Bl()\o(z))
+ {1 = Ao(2) = (1 = 2)A(2)} B' (Mo (2)),

we have
. 1= Xo(2) — (1= 2)X0 (2)
Jim (1-2) T
= lim (1 —2)° { (1= Xo(2))* 1 = B(w(2)) — {1 — do(2)}B'(Mo(2))
21— (1- 2)2 (1- /\O(z))2

1= o(2) - (1= 2N(2)
+ 1220 202900 g o)
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~ lm {{lz—f‘;ﬁz—’}%o(lﬂo(z))“

z—1—
o« 1= B(u(2)) = {1 = Xo(2)}B'(h(2))
(1= Ao(2))?

1= 2a2) — (1= 2N(2)
2y 122 02N g )
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Here, in the third equation we use (4), (10) and the Lebesgue Dominated
Convergence Theorem, and in the fourth equation we use Aj(1) = ps.

The last equation completes the proof of (11).

Note that
lim (1-2)7 1- tO(zzl_—(i); 2)ty(2)
_ -
= lim (1-2) {pl — o(2)20(2) zl(i;)z)gg{xo(z)xo(z)}
f ol /\o(zzl—_(i); 2)N(2) }
and that
Jim (1 rpt = M@ (2) —(1(1_ —Z;)d%{Ao(z)Ao(z)}
=p lim (1-2)° { 1= ()L ole)
1- Xo(z)( - _(1z )—2 2)X0 (2) 7o(2)
P LA )
= p(ps)Q“’f—z—F;(fl2 by (10) and (11).

Then (12) immediately follows by combining the two results above.
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From (11) and (12) we have

d z—1
21_1317(1 2 dz {z—to(z)}
1 —to(2) — (1 — 2)ty(z)

= lim (1—2)°

z—1- (z — to(2))?
i (1= e 2 L= @) = (- ()
=1 (z — to(2)? =
b el te(2) — (1= 2)t(2)
= GogmpLmt-a) (L
D 2_0.CLF(0') by (12)

= Toagme® T

which completes the proof of (13).
When 7 # 0, from (2) we know

\<Zb[)\ ' <1, and  |ti(1)| < 1,

which give that

lim d z—1 _ 1
- dz \z—ti(z) ) 1—t:(1)

and consequently we have (14):
d z—1
. @ f oz
zligl—(l ) dz {z - t,(z)} 0

A.2. Proof of Lemma 3.3

Observing that

TOEDS

WE

bri(z Z Zbk)\

n=1k=n k=1n=1
S 1= BOE)
= LT MO
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when i = 0, we have

lim (1 2)7 % {i(f\o(@}

z—1- dz 1— /\0(2)

= Jim (1 Z)UXO(”)d,\j(z) { : If? (Q((’S)) }
) 1—-2z \7, s d 1 — B(X(2))

g <1 - Ao(z)> Yo(2)(1 =253 ) { o) }

= (ps)' ™7 ZF_((?,

so that

. Ld:

Tim (1 2)7 - So(2)
| o [ 1= BOo() d {1-B(o(2)

= tim (1= 27 {30 T e { AT

z)l
' . d [1—B{X(2))
= lim (1-2)720(2) {—1__)\0(2}?}

al’(o)

_ -0
= (ps) s_1°

When ¢ # 0, from the fact that lim, ;- )f;(z) is finite, (20) immedi-
ately follows.

A.3. Tauberian theorem

Here, we describe the Tauberian Theorem for power series and the
following lemma which play a central role in our analysis.

THEOREM 5.1. Let g > 0 and suppose that Q(z) = > 722, qr2® con-
verges for 0 < z < 1. If L(z) varies slowly at infinity and 0 < 0 < 00,
then the two relations are equivalent:

1 1

~ L — 17
Q) (1—2)° (1~z)’ ‘
and
+qg+-+ N;n"L(n) n — 00
90 q1 an ’)’(O’ + 1) ) .
Proof. See [7], p.423. O

LEMMA 5.2. For0 < v < «, if Y .7_, k®xy ~ n?, then > x), converges,
k=1
and }:an zy ~ /(o — y)nIe,
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Proof. See [22] 3.3 (c), p.59. O
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