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ON SEMI-RIEMANNIAN MANIFOLDS
SATISFYING THE SECOND BIANCHI IDENTITY

Jung-Hwan KwoN, YoNG-Soo Pyo, aND YouNnGg JIN SuH*

ABSTRACT. In this paper we introduce new notions of Ricci-like
tensor and many kind of curvature-like tensors such that concir-
cular, projective, or conformal curvature-like tensors defined on
semi-Riemannian manifolds. Moreover, we give some geometric
conditions which are equivalent to the Codazzi tensor, the Weyl
tensor, or the second Bianchi identity concerned with such kind of
curvature-like tensors respectively and also give a generalization of
Wey!’s Theorem given in [18] and [19].

1. Introduction

It has been shown in Besse [3] and Gray [12] that there exist a few
of classes of Riemannian metrics which generalize the notion of Einstein
metrics and are characterized by tensorial conditions. In Riemannian
geometry, it is well known that the properties of the Ricci tensor S and
its covariant derivative V.S are much more important. Also, the first
and the second Bianchi identities for the Riemannian curvature tensor
R give nice expressions and important roles for the study of geometry.

Now let us denote by (M, g) an n-dimensional semi-Riemannian man-
ifold. In section 2 we prepare some basic formulas on semi-Riemannian
manifolds concerned with the first and the second Bianchi equation,
which can be said respectively the first and the second Bianchi identity
in terms of components, for the Riemannian curvature tensor R. In
sections 3 and 4 we consider such a notion of the Ricci-like tensor VU
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for the symmetric tensor U of type (0,2) and the curvature-like tensor
T of type (0,4) on semi-Riemannian manifolds and want to find out
some equivalent conditions when the symmetric tensor U or Ric(T) is
the Codazzi tensor or otherwise the Weyl tensor.

In sections 5, 6 and 7 we introduce the new notions of different type
of curvature-like tensors such that the concircular curvature-like tensor
Y = Y(T,U), the projective curvature-like tensor V.= V(T,U), and
the conformal curvature-like tensor B = B(T,U) which generalize the
concircular curvature tensor Z, the projective curvature tensor W, and
the conformal curvature temsor D. With such kind of curvature-like
tensors Y,V and B we want to investigate some geometric conditions
which are equivalent to the second Bianchi identity in terms of the Ricci-
like 2-form ¢y or the associated curvature-like 2 form ¥ respectively.

Among so many different type of theorems concerned with such curva-
ture-like tensors we want to introduce a main theorem given in section
7. In order to do this let us denote by ¥ the associated curvature-like
2 form for the curvature-like tensor T (cf. Section 4), where T is viewed
as the 2-form with values in the tensor bundle of type (0,2). When
the associated curvature-like 2 form ¥ g of the conformal curvature-like
tensor B satisfies §(Wg) = 0, (M, g) is said to have the harmonic-like
curvature. Now we introduce the following:

THEOREM 1. Let M be an n~dimensional semi-Riemannian manifold
and let T' be the curvature-like tensor and let U = Ric(T) be the Ricci-
like tensor for T. We assume that T satisfies the second Bianchi identity.
If n 2 4, then the following assertions are equivalent:

(a) VU € C>°(A).

(b) The conformal curvature-like tensor B = B(T,U) satisfies the
second Bianchi identity.

(c) U is the Codazzi tensor.

(d) The Ricci-like form ¢y satisfies the Codazzi equation.

(e) The associated curvature-like form ¥ g is closed.

(f) The associated curvature-like form Up is coclosed.

(g) (M,g) has the harmonic-like curvature.

When U — m(Tr U)g is the Codazzi tensor, the symmetric tensor
U of type (0,2) is said to be the Weyl tensor. When the associated
curvature-like 2 form ¥p of the conformal curvature tensor D satisfies
0(¥p) = 0, we say that (M, g) is said to have the harmonic Weyl tensor.
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If the Riemannian metric g is conformally related to the Riemannian
metric g* which is locally flat, then (M, g) is said to be conformally flat.
In Riemannian geometry, it is seen by Weyl [18] and [19] that (M, g) is
conformally flat if and only if D = 0 provided n 2 4, and S is the Weyl
tensor provided that n = 3. In particular, if D = 0 and if n 2 4, then
S is the Weyl tensor (See Yano and Kon [23]). However, conversely if
S is the Weyl tensor, we do not know whether we are able to get any
information about the curvature tensor. In this paper we give an answer
for this problem affirmatively. Now let us apply the curvature tensor R,
the Ricc tensor S and the conformal curvature tensor D to Theorem 1.
Then as a generalization of Weyl’s Theorem given in [18] and [19] we
assert the following:

THEOREM 2. Let M be an n-dimensional semi-Riemannian manifold
and let R and S be the curvature tensor and the Ricci tensor on M. If
n 2 4, then the following assertions are equivalent:

(a) VS e C*®(AaI).

(b) The conformal curvature tensor D satisfies the second Bianchi

identity.
(c) S is the Weyl tensor.
(d) The Weyl form g satisfies the Codazzi equation.
(e) The associated curvature-like form Wy, is coclosed.
(f) (M,g) has the harmonic Weyl tensor.

2. Semi-Riemannian manifolds

This section is concerned with recalling basic formulas on semi-Riem-
annian manifolds (See Kobayashi and Nomizu [14] and O’Neill [15]).
Let M be an n(Z 2)-dimensional semi-Riemannian manifold of index s
(0 £ s £ n) equipped with the semi-Riemannian metric tensor g. We
can choose a local field {E;} = {E\,..., E,} of orthonormal frames on
a neighborhood of M. Here and in the sequel, the indices i, 7k, ...
run from 1 to n. With respect to the semi-Riemannian metric we have
g(E;, Ey) = €0k, where

€j=—1lorlaccordingas 1<j<s or s+1Zj<n.
Let {6;}, {0:;} and {©;,} be the canonical form, the connection form

and the curvature form on M, respectively, with respect to the local
field {E;} of orthonormal frames. Then we have the following structure
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equations

do; + Y ;60 NO; =0, 6+ 065 =0,
J

(2.1) .
dfi; + ;Ekeik NOij = Oy, Oy = 3 ;EklRijklek N6y,

where €;;..x = €i€; - - - €k and R;jr; denotes the components of the Rie-
mannian curvature tensor R of M. By the equation (2.1), the first
Bianchi equation

(22) Z&j@ij A Oj =0
J

is given. In terms of components, it implies that we have the relation
(2.3) Rijki + Rjki + Ryiji = 0,

which is called the first Bianchi identity for the Riemannian curvature
tensor R.

Now, relative to the frame field chosen above, the Ricci tensor S of
M can be expressed as follows;

(2.4) S = Z €1j5i;0; ® 0,

(%]
where S;; = Y, exRrijk = Sji. The scalar curvature r of M is also
given by

(25) r= Zejsjj'
J

An n-dimensional semi-Riemannian manifold M is said to be Einstein
if the Ricci tensor S satisfies the condition
T

(26) Si]' = Eeidij.

The components T;;..k; of the covariant derivative of the components
T;j...k of the tensor T are defined by

2.7)
ZslTij-uklgl =dT;..x — ZEI (Thj.-6 + Tipeo b + -+ + Tijotbi)s
] I
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where 6y = {6;} and 6 = {6;;} denote the canonical form and the
connection form associated with the orthonormal frame {E;} on M. By
the exterior derivative of the third equation of (2.1), we have

(2.8) dO;; = }:6k(9ik A Ok — Oir A Okj),
k

with the help of the property d? = 0 and the property of the exterior
derivative. We can regard 6y = (6;) as a vector in R", and 6 = (6;;) and
© = (©;;) can be viewed as skew-symmetric matrices of order n. Then
the equations (2.2) and (2.8) can be reformed as

(2.9) OANb =0, dO=OA0—0AG.

The first equation of (2.9) is called the first Bianchi equation and the
second one is called the second Bianchi equation for the curvature form

o.
On the other hand, since ©;; is the 2-form, the left hand side of (2.8)
is given by

1
d@ij = — 5 E 5kl(dRijkl NG NO+ Rijkldek NG — Rijklak A del)
k,l

1
=—3 zskl{z erRijrir0r A Ok N O
kol r

+ Z sr(RTjkleri + Rirklerj) A ek A 9[}

1
= — § Z Erk:l{Rijkl’f‘HT’ A gk A 01

r,k,l
+ (Rirkib N 60) A Bpj — 0ip A (Rrjrifi A 01)}

1
=—3 Z ErkiRijrir0r N O NGO + Zer(eir NOrj —0ir ANOyj),
rk,l r

where the first equality follows from the fact that the canonical form is
a 1-form, the second one is derived from (2.1) and (2.7), the third one
follows from the second equation of (2.1) and fourth one is derived by
(2.1). Hence we have

1
(210)  d8y =-—7 ) " erniRijhirts Ak NG+ (OAO—OAO),.
rk,l
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From the second Bianchi equation (2.9) for © and (2.10), we have

Z ErktRijrirtr N O N O = 0.
r.k,l

By the property R;;r; + Rijie = 0 of the Riemannian curvature tensor
R, we have

(2.11) Rijkin + Rijink + Rijam = 0,

which is called the second Bianchi identity for R. Hence we have

(2.12) ZSthjkzh + Sjie — Sjre = 0, QngSjkk =7,
h k

On the other hand, the exterior differential dr of the scalar curvature r
on M is given by

(2.13) dr = Zejr]ﬂj.
i

Now, the semi-Riemannian manifold of constant sectional curvature
is called a semi-space form. Let M} (c) be an n-dimensional semi-space
form of constant sectional curvature ¢ and of index s, 0 < s < n, then
the Riemannian curvature tensor R;jr; of M (c) is given by

(2.14) Rijin = ceij(0udjk — dikdji)-

3. Ricci-like tensors

In this section, the concept of Ricci-like tensors for the curvature
tensor on the semi-Riemannian manifold is introduced. Let M be an
n-dimensional semi-Riemannian manifold with semi-Riemannian metric
g. Let R (resp S and r) be the Riemannian curvature tensor (resp.
the Ricci tensor and the scalar curvature) on M. We define VS by
VS(X,Y,Z) = VxS(Y,Z) for any vector fields X, Y and Z, where V
denotes the Riemannian connection of M. Then we have VS(X,Y, Z) =
VS(X,Z,Y). Furthermore, it follows from the second Bianchi identity
that we have dr = 2div S.

Now, let TM (resp. T*M)be the tangent bundle (resp. cotangent
bundle) of M. The space DM consisting of all differentiable forms
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on the Riemannian manifold M may be regarded as follows; DM =
EZ:O DPM, where DPM is the subspace of all p-forms in DM. Let

H = H(M, g) be the vector subbundle in D3M = ®°T*M the fiber of
which, at any point x in M, consists of all trilinear mapping & of T, M X
T.M x T, M into R such that £(X,Y,Z) = £(X,Z,Y) for any vector
fields X,Y and Z at z and 2}, ¢,;6(E;, E;, X) = ), €;6(X, E;, E;) for
any vector X at x and any orthonormal basis {F;} for T, M. Then
& = VS is the section of the vector bundle H. We call the section on
C*°(H) the Ricci-like tensor on M. Then naturally a scalar product on
the vector bundle H = H(M, g) can be defined by

<&n>=Y_eit(Ei, Ej, B )n(Ei, Ej, Ex).
i5.k

Let F'M be the ring consisting of all smooth functions on M and
let T7M be the module over FFM consisting of all tensor fields on M
of type (r,s). For any integers p and ¢ such that 1 £ p < ¢ < s, the
metric contraction reduced by p and ¢ is denoted by Cpq : Ty M —
T7_,M with respect to the orthonormal frame {E;}. In terms of the
metric contraction, the section £ in C°°(H) satisfies that £(X,Y, Z) is
symmetric with respect to Y and Z, and 2C15(§) = Cas(§).

Given a semi-Riemannian manifold (M, g) one has the following nat-
ural bundle homomorphisms associated with D3M : the partial alter-
nation a : D3M — D3M, the partial symmetrization b : D3M — D3M
and the mapping i : T*M — H(M, g) such that

wE)(X, Y, 2) = SHE(X,Y, 2) ~ &Y, X, 2)},

HEX,Y, 2) = SE(X, Y, 2) + €%, Z,X) + £(Z,X, V),

2n

WWw)(X,Y, 2) = g(X,Y)w(Z) + 9(X, Z)w(Y) + ——2 (Y, Z)w(X)

n F—
for any £ in D3M, any vector fields X, Y and Z at z, any 1-form w in

T*M. The contraction ¢ : D3M — T*M is defined by ¢ = C}2, namely
it is given by

A&)(X) = D _e(Bj By, X)
j
for any orthonormal frame {E;}. By the contraction C,, we have

(3.1) Cual€) = Cisl®) = 5Cn(€), €€ CX(H)



136 Jung-Hwan Kwon, Yong-Soo Pyo, and Young Jin Suh
The subbundles A, B, C and 7 in H = H(M, g) are defined by
A=HNKera, B=HNKerb, C=HNKerc, IT=1Im:.

Then it is easily seen that A and B are contained in the vector bundle
C. On the other hand, for any 1-form w in T* M, we put i(w) = £. Then
we have

(n—1(n+2)
n—2 v

(3.2) Cr2(§) =

LEMMA 3.1. Subbundles C and I are orthogonal and subbundles A
and B are also orthogonal.

Proof. By definition, for any section £ in Z, there exists a 1-form w
in T*M such that i(w) = £ so that it satisfies

2n

E(X’Y7 Z) = g(X’Y)w(Z) +9(X7 Z)w(Y) + n— 29

(¥, Z)w(X)

for any vector fields X, Y and Z. Moreover, it satisfies £(X,Y,Z) =
&(X, Z,Y), which implies that

1
Y €i€(E;, By 2) = ) e€(E;, Z,Ey) = 5 2 &2, By, Ej).
i j j

This implies that it is contained in H. Thus we have Z C H. From this
fact we have the following property; for any n in C and any £ in Z the
scalar product is given by

<&n>= Z eijxn(Ei, Ej, Ex)§(E;, Ej, Ey)
ik
= Z ez]kn(Eu Ej7 Ek){w(Ek)g(Ei) EJ) + w(E])g(Eh Ek)
ik
2 w(E)g(Es, Bi)}
= Z ei{w(E;)Cra(n)(Es) + w(E;)Ciz(n)(E;)

2n
-2

+

+ w(E;)Ca3(n)(Es)}-
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Since 7 is the section of the subbundle C, we have by definition C12(n) =
0, from which together with (3.1) it follows that we obtain that Cp,(n) =
0 for any p,q = 1,2,3. Thus we have < £, >= 0 and we can show that
subbundles C and Z are orthogonal.

For the orthogonality of subbundles A and B, the proof is trivial. In
fact, any section £ in A and 7 in B, the scalar product < £,n > is given
by

<&n> =Y eil(Ey, By, Ex)n(Ei, Ej, E).
ijk
Since £ is the section on A, £(X,Y, Z) is symmetric with respect to X,
Y and Z and hence we have

1
<§n>= 3 Zgijkf(EivEjaEk){n(Eian,Ek)
igok
+7](Ej7EkaEi) +77(Ek7E17EJ)}
=0,

where the last equation is derived from the definition of the subbundle
B. It completes the proof. O

ProProsITION 3.2. The subbundle H = H(M, g) can be orthogonally
decomposed as follows:

H=Ae¢BelI.

Proof. The proof is similar to that in the Riemannian manifold. See
Besse (3] and Gray [12]. So it is simply sketched for later use. By Lemma
3.1, three subbundles A, B and 7 are mutually decomposed. So we may
show that subbundle H can be decomposed into three parts. For any
section £ in C*°(H) we put &7 = (n—;ﬁi—;——Q)i(clg(f)). By the definition
of the mapping ¢, &7 is the section in C°°(Z). Then we have

n—2
(n—1)(n+2)

+ n—2il—2-g(Y, Z)Cr2(E)(X)}.

§2(X,Y,Z) = {19(X,Y)C12(6)(Z) + g(X, Z)Cr2(E)(Y)

Accordingly, by the simple and direct calculation, we see that Ci2(¢7) =
Ci3(éz) = Ca3(£1)/2 = C12(&).
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Next, we put £4 = b(§ — £7). Then it is easily seen that £4(X,Y, Z
is symmetric with respect to Y and Z and Ci2(€4) = Ci3(éa) =
C23(€4)/2 = C12(§). Thus €4 is the section in C*(A).

We put €g = £ — £ — €4. Then, by the direct calculation, we can
show that £5(X,Y,Z) + £s(Y,Z,X) + £3(Z,X,Y) = 0 and C12(&5) =
C13(ép) = Ca3(€p) = 0, from which it follows that £z is the section in
C>(B). It completes the proof. O

Now, let M be an n-dimensional semi-Riemannian manifold with Rie-
mannian connection V and let 6y = {6;} and 8 = {6;;} be the canonical
form and the connection form on M associated with the orthonormal
frame {E;}. Let U be a symmetric tensor of type (0,2) with compo-
nents U;;(= Uj;) = U(E;, Ej). We define the covariant derivative VU
of the symmetric tensor U are defined by VU(X,Y,Z) = VxU(Y, Z).
Since U is symmetric, so is VU with respect to Y and Z. If it satisfies
C12(VU) = C23(VU)/2, then VU is the section in C*(H).

For the Ricci tensor S, V.S is the section in C*°(H). So the symmet-
ric tensor U of type (0, 2) such that VU € C*®°(H) is the generalization
of the Ricci tensor and the property of VU is checked. First we inves-
tigate the case of VU € C*°(Z). The components U;;;, of the covariant
derivative VU of the symmetric tensor U are defined by

(33) EEkUijkek = dUij - Zek(Ukjeki + Uikekj)v
k k

where Uijk(: sz’k) = VU(EkaEian) = VEkU(Eiij)'

THEOREM 3.3. Let M be an n-dimensional semi-Riemannian mani-
fold and let U be a symmetric tensor in D*M with u = Tr U. Then the
following assertions are equivalent:

(a) VU € C*(T).

(b) The components of VU are given by

i ukeidij + (n — 2)5k (Ujdki + uidk]-).

(34) 2(n — 1)(n+ 2)Us = 53_—-2-

Proof. Suppose that VU € C°(Z). Then there exists a 1-form w
such that i(w) = VU and

2n
n—2

(3.5) VU(X,Y,Z) = g(X,Y)w(Z)+9(X, Z)w(Y)+ 9(Y, Z)w(X).
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Accordingly we have

2 —
OV = s By (07D ED
n—2 n—2

from which together with the above equation, we have
(n—1)(n+2)VU(X,Y,Z)
= (n — 2){C12(VU)(Z2)g(X,Y) + C12(VU)(Y)g(X, Z) }

4 2n2012(VU)(X)g(Y, Z)

Since VU is the section in C°°(Z), we have
and hence we get

2(n — 1)(n + 2)VU(X, Y, Z)

=(n—-2{Zug(X,Y)+Yug(X,2)} + 2n2Xug(Y, Z).

n —
In terms of components, the above equation is given as (3.4). Thus the
equations (3.4) and (3.5) are equivalent, which implies that (a)<(b). It
completes the proof. g

The non-trivial example of the symmetric tensors U in D? M such that
VU € C*°(ZI) are given by Ki and Nakagawa [13]. They showed that
there exist infinitesimal many hypersurfaces satisfying V.S € C*(Z) of
Mn"*+1(c), n 2 3, where S denotes the Ricci tensor.

We define a 1-form ¢y = {¢;} associated with the symmetric tensor
U by

(36) ¢l = Zngijej'

Then ¢y is called a Ricci-like form for the symmetric tensor U. The
canonical form 63 = (6;) and the Ricci-like form ¢y = (¢;) for U can
be regarded as vectors in R™ and the connection form 6 = (6;;) can be
regarded as skew-symmetric n x n matrix. We call the equation

(3.7) doy + 0 Ady =0
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the Codazzi equation for ¢yy. The symmetric tensor U of type (0,2) is
called the Codazzi tensor if it satisfies VU(X,Y, Z) = VU(Y, X, Z) for
any vector fields X, Y and Z, namely, in terms of coordinates, if its
components of the covariant derivative VU of U satisfy

(38) Uijk = Uzk]

For Codazzi tensors, we have many studies, for examples, Berger and
Ebin [2], Derdzinski [7, 8], Derdzifiski and Shen [11], Choi, Yang and
one of the present authors [17]. Now we assert the following:

THEOREM 3.4. On the semi-Riemannian manifold M, let U be the
symmetric tensor in D*M and let ¢y be the Ricci-like form for U. If it
satisfies 2C12(VU) = Ca3(VU), then the following are equivalent:

(a) VU € C=(A).

(b) U is the Codazzi tensor.

(¢) ¢u satisties the Codazzi equation doy + 6 A ¢y = 0.

Proof. We first show (a)<>(c). Under the assumption 2C12(VU) =
C23(VU), we see that VU € C*(H). Since ¢y = {¢:} is the Ricci-like
form for U, the exterior differentiation of (3.6) is given by

(d¢U)i = ZEj(dUij A ¢9j + Uijdﬁj)

J

= " eik{(Usjtr + UrjOki + Uskbi;) N O; + Usj(—0;k A 6)}

Tk

= Zejk(Uijkak + UrjOri) A 0;
ik

= ZeijijkOk AO; — (0 Ay,
7k

and hence we have

(3.9) (déy + 0N y); = Zéfijijk@k NGO,
Sk

which implies that d¢y +0A¢y = 0 holds on M if and only if U, jx = Usy;.
It is equivalent to VU (X, Y, Z) = VU(Y, X, Z). Accordingly, the 1-form
¢y satisfies the Codazzi equation doy + 8 A ¢y = 0 if and only if VU
is symmetric, i.e., VU € C*(A). The statement (a)<(b) is trivial. It
completes the proof. U
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The simplest examples of Codazzi tensors which are not parallel are
the second fundamental forms of hypersurfaces in a space form. The
semi-Riemannian manifold is said to have the harmonic curvature if the
Ricci tensor becomes the Codazzi tensor.

REMARK 3.1. It is trivial that the semi-Riemannian manifold whose
Ricci tensor is parallel has the harmonic curvature. So the class of semi-
Riemannian manifolds which has harmonic curvature but not parallel
Ricci tensor is much more essential. Berger and Ebin [2] proved that on
a compact Riemannian manifold every Codazzi tensor is parallel, if the
sectional curvature is non-negative and if there is a point at which the
sectional curvature is positive. From this point indefinite Riemannian
manifolds are so much valuable in the theory of harmonic curvature.

For the subbundle B, we can verify the following.

THEOREM 3.5. On the semi-Riemannian manifold M, let U be the
symmetric tensor in D*M. Then VU € C*(B) if and only if VU
(X, X,X) =0 for any vector field X.

Proof. If U satisfies VU € C°°(B), then we have by the definition
VUX,Y,Z)+VU(Y,Z,X)+VU(Z,X,Y)=0

for any vector fields X, Y and Z, from which it follows that VU (X, X, X)
= 0 for any vector field X,

By using the elementary method of Linear Algebra the converse can
be derived completely. The method of polarization is repeatedly used.
Now we omit the details. 0

Next, we define a Weyl equation of the Ricci-like form ¢y for the
symmetric tensor U of type (0,2). We call such a equation

(3.10) doy +0 A ¢y = duh@+uA )

1
2(n — 1)(

the Weyl equation for ¢y, where u = C13(U) = T'r U. The symmetric
tensor U is called the Weyl tensor if its components of the covariant
derivative VU of U satisfy

(3.11) Uijk - ukaiéij = Uikj — ’LLjEi5ik.

1
2(n - 1) 2(n—1)
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The Ricci-like form vy in T*M is defined by

1 1
2(—U9,% Z&"g ij —_1)U€i5ij)9j,

which is called the Weyl form for U. For the Weyl tensor, see Bour-
guignon [4], Derdziniski [9] and Derdziriski and Shen [11].

REMARK 3.2. In their paper [13], Ki and Nakagawa gave many ex-
amples of Riemannian manifolds whose Ricci tensors are the Weyl ten-
sors, but not the Codazzi tensors. Let M be a Riemannian manifold
with the above property. Then the Ricci tensor of the product manifold
M?(c) x M has the same situation.

(3.12) v =¢u —

THEOREM 3.6. Let M be an n-dimensional semi-Riemannian man-
ifold and let ¢y be the Ricci-like form for the symmetric tensor U in
D?M with u = C12(U). If it satisfies 2C12(VU) = Ca3(VU), then the
following assertions are equivalent:

(a) VU € C*(ATI).

(b) U is the Weyl tensor.

(¢) U — sz=yug is the Codazzi tensor.

(d) The Ricci-like form ¢y sat1sﬁes the Weyl equation.

(e) The Weyl form ¢y = ¢y — 2(n 0 s———uf satisfies the Codazzi equation.
(

f) The components of the covariant derivative VU of U satisfy (3.11).

Proof. (f) is the definition of the Weyl tensor. We show that (b)=>(c).
By (3.11) we have
{Ui; -

ueibij e = {Uix — )UEi5ik}j,

1 1
2(n—1) 2(n—1
which implies that the symmetric tensor U — ( o)UY is the Codazzi
tensor by (3.3), where g denotes the semi-Riemannian metric. So we
have (b)=(c). It is trivial that the converse (c)=-(b) holds.

Next we show that (c)=-(e). Suppose that the symmetric tensor
U - g L s-ry49 is the Codazzi tensor. For the Ricci-like form ¢ for
U— 5n 1)ug, we see that the 1-form ¢(U (nl_l)ug) satisfies the Co-

dazzi equation.

On the other hand, we have

d){U— ug} = ZgJ{UZJ (—1T)uei5ij}0j,

(
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and hence we get

MU = grmgrua} = du - ub =y,

1
2(n—1)

from which it follows that 1y satisfies the Codazzi equation. This means
that (e) holds. The converse (e)=>(a) is proved from the above equation.
We show that (e)<>(b). For the Ricci-like form ¢y for the symmetric

tensor U, the Weyl form vy is given by ¢y = ¢y — ﬁu@ Accordingly
we obtain
dyy + 0 ANy
= doy — éﬁ(du NG+ udd)+ 0N {oy — 2—(711_—1)u0}
— dgy — 2(Tl_l){du/\9+u(~9/\9+®)}+0/\{¢y - ﬁuﬁ}
— déy +0 A by — ﬁ(duwﬂe).

Accordingly, 1y satisfies the Codazzi equation if and only if ¢y satisfies
the Weyl equation.

Last we assert the fact that (c)<{a). Suppose that VU is the section
in C*(H). Then VU(X,Y,Z) is symmetric with respect to ¥ and
Z. On the other hand, suppose that VU is the section in C*°(A),
VU(X,Y,Z) is symmetric with respect to X and Y and hence VU is
symmetric. Accordingly, we have U,;; = Ujr;. On the other hand, we
have C12(U) = C23(U)/2, and hence we have C12(U) = Co3(U) = 0.
Thus U is the Codazzi tensor and therefore it is the Weyl tensor. So, in
this case we prove (a)=>(c). In the case VU € C*(Z), by Theorem 3.3
we have

2(n — 1)(n + 2)Uijk = 2nuk6i5ij + (’I’L — 2)sk(uj5ki + uzdkj)
Accordingly we have

2(n — 1)(n + 2)(Uijk — Usky)
= {2nuke;d;j + (n — 2)er(uj0k: + uide;)}
—{2nu g0 + (n — 2)e; (urpbjs + wibr;)}
= (n + 2)(ugeibi; — ujeiik).
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By (3.11), the above equation means that U — Tnl—T)UQ is the Codazzi

tensor and we can prove (a)=>(c). Next we suppose (c) holds. The
section £ = VU in C*°(H) is decomposed into three terms & = £7+&4+
&p, where & € C°(T), {4 € C°(A) and &g € C°(B). By the proof
of Proposition 3.2, the first term &7 is given by &7 = (—ﬁﬁiTz)z(c(f))
where ¢(§) = C12(VU) = C13(VU) = Co3(VU)/2 = du/2, u=Tr U =
C12(U). Accordingly we have

&(X,Y, Z)
n—2 ]
= S CES) i(du)(X,Y, Z)
1
= Do) T DI Y)du(2)

+g(Y, Z)du(Y)} + 2ng(Y, Z)du(X)].

Furthermore, £ 4 is given by £ 4 = b(§ —€7). The section & 4 is contained
in C*(A). In fact, we get

§aX,Y, Z)
= b(§ - SI)(XaYa Z)

- %{(5 — &) (X, Y, Z) + (€ — &)V, Z,X) + (£ — &1)(Z, X, Y )}
_ %{g(X, Y,2) +£(Y,Z,X) +£(Z,X,Y)}
_ %{&(X, Y,Z) +€&2(Y, Z,X) + €2(Z, X, Y)},

which means that it is symmetric with respect to X and Y, because
&(X,Y,Z) and €7(X,Y, Z) are both symmetric with respect to Y and Z.
Thus £ 4 is the section in C*°(.A). On the other hand, by the assumption,
we have

1
XY, 2)-&Y, X, Z2) = ———
€( ? ? ) 6( 7X7 ) z(n _ 1)
Substituting this equation into the above {7 and £4 and calculating
directly, we can obtain {7(X,Y,Z) + E4(X,Y,2Z) = €(X,Y, Z), which
implies that &g is the O-form. Thus £ = VU € C*°(Z & .A). It completes
the proof. a

{9(X, Z2)du(Y) — g(Y, Z)du(X)}.
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THEOREM 3.7. Let M be an n-dimensional semi-Riemannian mani-
fold and let U be the symmetric tensor in D2M. If it satisfies 2C12(VU)
= Cq3(VU), then VU € C*°(A & B) if and only if u = C12(U) is con-
stant.

Proof. Suppose that VU € C>*(A @ B). Then we have 2C»(VU) =
2013(VU) = CQS(VU) IfVU ¢ COO(A), then ClQ(VU) = 013(VU) =
C23(VU), so we have C12(VU) = 0. on the other hand, if VU € C*(B),
then Clg(VU) + Clg(VU) + CQ3(VU) = 0, so we have Clg(VU) = 0.
Because of C3(VU) = du, and u = C12(U) is constant.

Conversely, we have C12(VU) = C13(VU) = Cqe3(VU) = 0. From
the assumption VU is the section in C*°(H) and hence by Proposition
3.2 it can be decomposed as VU = &1 + €4 + &5, where &7 € C®(T),
Eqa € C®(A) and € € C*°(B). By the above discussion, we have
Cpg(€4) = 0 and Cpqe(&8) = 0. Since the contraction is linear, we get
Cpq(€z) + Cpa(€a) + Cpe(és) = 0, and hence we get Cpq(§z) = 0, By
Theorem 3.3, we obtain é7 = 0. It completes the proof. O

4. Curvature-like tensors

In this section the concept of Bianchi identities for the curvature-like
tensor on the semi-Riemannian manifold is introduced. Let M be an
n-dimensional semi-Riemannian manifold of index s, 0 £ s £ n, with
Riemannian connection V. We denote by TM the tangent bundle of
M. Let T be a quadrilinear mapping of TM x TM x TM x TM into R
satisfying the curvature-like properties:

(a) T(X,Y,2,U) = -T(Y,X, Z,U) = -T(X,Y,U, Z),
(b) T(X.,Y,2,U) =T(Z,U,X,Y),
(c) T(X,Y,Z,U) +T(Y,Z,X,U) +T(Z,X,Y,U) = 0.

Then T is called the curvature-like tensor on M. Let T;;x; be the com-
ponents of T associated with the orthonormal frame {E;}, then the
components T;;x; are given by Tk = T(E;, Ej, Ey, E;). By the condi-
tions (a), (b) and (c), following properties of the components of T hold
corresponding to the conditions (a), (b) and (c):

(4.1) Tijk = —Tjik = —Tijik,

(4.2) Tijrt = Triij = Tk,
(4.3) Tijrt + Tjrar + Trsji = 0.
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If the components T} of a tensor T in D*M = ®* T* M satisfy (4.1),
(4.2) and (4.3), then it becomes a curvature-like tensor.

For an orthonormal frame {E;}, let 6, = {6;}, 8 = {S;;} and © =
{©,;} be the canonical form, the connection form and the curvature
form on M. In the same way as we associate a curvature form O to the
Riemannian curvature tensor R, we associate a 2-form &7 = {®;;} to
the curvature-like tensor T in the following

(4.4) b, = Z exiTijkibr N 01,
k.l

which is the analogue to the curvature form © except for the coefficient.
So it is called the curvature-like form for the curvature-like tensor T
The canonical form 6y = (6;) can be regarded as a vector in R" and the
connection form 6 = (6;;) and the curvature-like form ®r = (®;;) can
be regarded as n x n skew-symmetric matrices. Then, corresponding to
the first equation of (2.9), the equation

(4.5) B Al =0

is called the first Bianchi equation for the curvature-like form ®r. By
(4.4) and (4.5) the tensor T satisfies the first Bianchi equation if and
only if its components satisfies (4.3). So ®r always satisfies the first
Bianchi equation. So (4.3) is called the first Bianchi identity for T'.
Corresponding to the second equation of (2.9), we call the equation

(4.6) d®r =P A0 — O NPT

the second Bianchi equation for the curvature-like form ®.

PROPOSITION 4.1. On the semi-Riemannian manifold M, let T be
the curvature-like tensor in D*M on M. Then the following assertions
are equivalent:

(a) The curvature-like form ®r satisfies the second Bianchi equation
(4.6).

(b) Its components satisfy

(4.7) Tijrin + Tijink + Tijurr = 0.
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Proof. Since ®;; is the 2-form, the left hand side of (4.4) is given by
dq)ij = ngl(dTijkl A NG+ Tijkldgk NG — Tijk:lgk A d@{)

k.l
= Z Ekl{z €rTijkir0r N Ok NG
k,l r
+ Z er(TrjriOri + Tivirbrj) N O N6}

= Z erkt{Tijr1r0r N Oy A6
r,k,l

+ (TirktOu ANO) N Oy — Oir A (Trjiib A6}

= Z Erleijklror A 9k A 0! + Z 51‘(@1'7‘ A erj - eir A q)rj)a
rk,l r
where the first equality follows from the fact that the canonical form is
a 1-form, the second one is derived from (2.1) and (2.7), the third one
follows from the second equation of (2.1) and fourth one is derived by
(4.4). Hence we have

(48)  d®ij =) eruTignrty AO N0+ (2 N0 — 0 A D)y
rk,l

It implies that (a) is equivalent to (b). This completes the proof. O

The equation (4.7) is called the second Bianchi identity for the curva-
ture-like tensor 7.

REMARK 4.1. Of course, as is well known, the Riemannian curvature
tensor R satisfies the first and the second Bianchi identities.

REMARK 4.2. By Proposition 4.1, it is seen that the parallel cur-
vature -like tensor on M satisfies the second Bianchi equation. The
converse does not necessarily hold. See Example 6.1.

Next, we define a associated curvature-like form ¥ for the curvature-
like tensor T'. The 2-form ¥¢ with values in the bundle D?M is defined
by

(4.9) Ur = Zfzjq’zjei N85,

iJ
which is called the associated curvature-like form for the curvature-like
tensor T'. If d¥, = 0, then the associated curvature-like form ¥ is said
to be closed.
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THEOREM 4.2. Let M be an n-dimensional semi-Riemannian mani-
fold. For any curvature-like tensor T with components T;;i;, the follow-
ing assertions are equivalent:

(a) The associated curvature-like form ¥ is closed, i.e., dVr = 0.

(b) The curvature-like form ® satisfies the second Bianchi equation
(4.6).

(¢) The components of the covariant derivative VT of T satisfy the
second Bianchi identity (4.7).

Proof. By Proposition 4.1, the assertions (b) and (c) are equivalent.
Next we show that the conditions (a) and (b) are equivalent. Since the
associated curvature-like form ¥y is given by (4.9), we have

d\I/T = Zsij(dq’ij AN Oi A ej + (Dij A dﬁz AN 0]' — (bij A 91 AN d6])

4,7
= Zgij(dq)ij AG; A 0]' - Zekq)ij AB; AOy A 0]'
(] k

+ Z&kq)ij AB; A ij AN Ok)
k

= Z&ij(dq)ij + Zekgik A q)kj — ngq)ik A ij) ANG; A Hj
4,7 k k
= Zaij(dq)T +OAN q)T — (DT /\0)ij A 01 A Hj,

2%

where the first equality follows from the fact that ®r is the 2-form
and the second one is derived by (2.1). From the above equation, the
conditions (a) and (b) are equivalent. It completes the proof. O

Now, let T be the curvature-like tensor in D*M and let ¥4 be the
associated curvature-like form for T. The mapping 6 : D*M — D3M
defined by the divergence : §(¥r) = —C15(VT'), where Cp, is the metric
contraction functioned by Cy, : Ty M — T]_, M. This is a generalization
of the well known differential operators on R3. For the orthonormal
frame {E;}, in terms of coordinates, the components of 6(¥r) is given by
(¥r)ijk = — > &T1ijr. If 6(¥r) = 0, then the associated curvature-
like form W7 is said to be coclosed.

REMARK 4.3. On the semi-Riemannian manifold (M, g) with the Rie-
mannian connection V, it has a formal adjoint V* : T*"M xT; M — T, M
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defined by as follows: for any vector fields Xi,..., X, and any « in
T*M xT; M, V*« is defined by

(V') (X1, Xp) = = Y _exViga(Br, X1, Xy),
k

where {E}} is the orthonormal frame. Namely, (V*a)(X1,...,X,) is
the opposite of the trace with respect to g of D*M valued 2-form

(X,Y) — (Vxa)(Y, X1,..., X))

For the exterior differential d : D"M — D™ M, we define by ¢ :
D"M — D""'M the formal adjoint. For the orthonormal basis {E;}
for T, M at any point z, the components of §(¥r) are given by

6(\IIT(T))(X’ Y’ Z) = Zekka\pT(T)(EkvXa Ya Z)
k

Accordingly, the above § operator on the semi-Riemannian manifolds is
the formal analogue of the adjoint operator to the exterior differential d
on the Riemannian manifold.

The semi-Riemannian manifold (M, g) is said to have the harmonic-
like curvature for T if §(¥r) = 0. In particular, if T = R, then we see
that (M, g) has the harmonic curvature.

Now, we want to introduce the concept of the Ricci-like tensors for
the curvature-like tensor on the semi-Riemannian manifold is intro-
duced. Let M be an n-dimensional semi-Riemannian manifold with
semi-Riemannian metric g and with curvature-like tensor T with com-
ponents T ;. The tensor Ric(T) associated with T is defined by Ric(T")
(X,Y), where Ric(T)(X,Y) denotes the trace of the map {Z — T(Z, X)
Y} and T(Z, X)Y is a vector field defined by T(X,Y, Z, W) = g(T(X,Y)
Z,W) for any vector fields X, Y, Z and W. Then Ric(T) is called the
Ricci-like tensor for T. By the definition of the Ricci-like tensor, Ric(T')
is a symmetric tensor of type (0,2) and its components T;; are given by

Tij =Y exThijk-
P

It easily seen by (4.1) and (4.2) that we have T;; = Tj;. The scalar-
like curvature t associated with T is defined by t = Ci2(Ric(T)) =

> ik EikThjjk-
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LEMMA 4.3. Let M be an n-dimensional semi-Riemannian manifold.
For any curvature-like tensor T' with components T}, let &1, 7 or
®Ric(T) be the curvature-like form, the associated curvature-like form or
the Ricci-like form for T. If ®1 satisfies the second Bianchi equation
d®r = P NO — 0 NP7, then we have

(4.10) 6(¥7)ijk = Tijk — Tikj,
(4.11)  doRic(T) + 0 A Pricery =0 if and only if §(¥7) =0,

where T;;, denote the components of the covariant derivative V(Ric(T))
of Ric(T).

Proof. Tt is trivial by (3.9) and (4.7) and the definition of 4. O

As the direct consequence of Lemma 4.3, we can prove the following.

PROPOSITION 4.4. Let M be an n-dimensional semi-Riemannian ma-
nifold. For any curvature-like tensor T, let @7, Y1 or ¢r(r) be the
curvature-like form, the associated curvature-like form or the Ricci-like
form for T. If ®1 satisfies the second Bianchi equation d®r = &+ A0 —
6 A @1, then Ur is coclosed if and only if Ric(T) is the Codazzi tensor.

We suppose that the curvature-like tensor 7" satisfies the second Bian-
chi identity (4.7). Then, by Lemma 4.3, we see that >_, & T}k = Tin; —
Tijx- Accordingly, we have 2,1y = >, &Ty; = t;, where t; =
C23(VRic(T)). So the Ricci-like tensor Ric(T) satisfies 2C;2(VU) =
C23(VU), where U = Ric(T). Accordingly, by Theorem 3.4, we can
prove the following.

THEOREM 4.5. Let M be an n-dimensional semi-Riemannian mani-
fold and let T be the curvature-like tensor and let ¢ r;.() be the Ricci-
like form for Ric(T). Then the following assertions are equivalent:

(a) V(Ric(T)) € C*(A).

(b) @ric(r) satisfies the Codazzi equation do gic(ry + 0 A dric(ry = 0.
(¢) Ric(T) is the Codazzi tensor.

(d) (M,g) has the harmonic-like curvature,

By Theorem 3.6, we have the following.

THEOREM 4.6. Let M be an n-dimensional semi-Riemannian mani-
fold and let T (resp. Ric(T') and t) be the curvature-like tensor (resp.
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the Ricci-like tensor and scalar-like curvature for T'). Let ¢r;c(1) be the
Ricci-like form for Ric(T'). Then the following assertions are equivalent:
(a) V(Ric(T)) e C*(AI).
) Ric(T) is the Weyl! tensor.
) Ric(T) — 5 1)tg is the Codazzi tensor.
(d) The Ricci-like form ¢ g, (1) satisfies the Weyl equation.
) The Weyl form Yg;c(ry = ®Ric(T) — ST )té? satisfies the Codazzi
equation.
(f) The components T;;i, of the covariant derivative VRic(T) of
Ric(T) satisfy

1 1

Tijk — 2(n—_1)tk5i5iy’ = Tirj — 2(n 1)t €i0ik.

Applying Theorem 4.6 to the case Riemannian curvature tensor R,
we can prove the following.

THEOREM 4.7. Let M be an n-dimensional semi-Riemannian man-
ifold and let R (resp. S and r) be the curvature tensor (resp. the
Ricci tensor and scalar curvature). Let ¢g be the Ricci form. Then the
following assertions are equivalent:

(a) VS e C*(ABI).

) S is the Wey! tensor.
c) S 1)rg is the Codazzi tensor.

(b

(

(d) The R1cc1 form ¢g satisfies the Weyl equation.

(e) The Weyl form s = ¢s— 2(n 0 s——— 10 satisfies the Codazzi equation.
(f) The components S;ji of the covariant derivative V.S of S satisfy

Sijk — TkE0ij = Sikj — Ti€:i0ik.

1 1

2(n—1) 2(n—1)

THEOREM 4.8. Let M be an n-dimensional semi-Riemannian mani-
fold and let R (resp. S) be the curvature tensor (resp. the Ricci tensor).
Let ¢, be the Ricci form. If the scalar curvature is constant. Then the
following assertions are equivalent:

(a) VS € C*(A).

(b) S is the Codazzi tensor.

(c) The components S;;;, of the covariant derivative VS satisfy S;jr =
Sikj-
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(d) (M, g) has the harmonic curvature.

5. The concircular curvature tensor 7

This section is devoted to the investigation of the concircular cur-
vature tensor defined on the semi-Riemannian manifold. Let M be an
n(2 3)-dimensional semi-Riemannian manifold of index s, 0 £ s < n,
with the Riemannian connection V and let R (resp. S or r) be the Rie-
mannian curvature tensor (resp. the Ricci tensor or the scalar curvature)
on M.

Now, let Z be the concircular curvature tensor with components Z;
on M, which is defined by

(5.1) Zijkl = Rijrl — €ij(0ubjk — Gikdj1)-

n(n — 1)

About the concircular curvature tensor on Riemannian manifold, see
Yano and Bochner [22] etc. As is easily seen, Z is the curvature-like
tensor on M.

REMARK 5.1. The semi-Riemannian manifold is of constant curva-
ture if and only if the concircular curvature tensor vanishes identically.

Now, let T be the curvature-like tensor and let U be the symmetric
tensor of type (0,2). We put u = C12(U). For such a pair (T,U), we
define the tensor Y = Y (T, U) with components Y;;x; by

u

n(n—1)

which is called the concircular curvature-like tensor for T and U. It
is trivial that ¥ = Y (7,U) is the curvature-like tensor. Calculating
directly we have

(5.2) Yijrt = Tijrr — €4j(0a0jk — dibj1),

(5.3) Yiikt + Yika + Yeiji = Tijrr + Tikar + Tiji-
From this equation and (4.3), we have
(5.4) Yijkt + Yk + Yriji = 0.

Thus we can prove the following.
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PROPOSITION 5.1. Let M be an n(2 2)-dimensional semi-Riemann-
ian manifold and let T be the curvature-like tensor and let U be the
symmetric tensor in D?M. Then the concircular curvature-like tensor
Y =T(T,U) satisfies the first Bianchi identity.

Next, we give a necessary and sufficient condition for the concircular
curvature-like tensor Y = T'(T, U) to satisfy the second Bianchi identity
in terms of the scalar-like curvature u, where u is given by u = C12(U)
for the metric contraction Cis.

LEMMA 5.2. Let M be ann(2 3)-dimensional semi-Riemannian man-
ifold and let T be the curvature-like tensor and let U be the symmetric
tensor in D?>M . If T satisfies the second Bianchi identity, then the con-
circular curvature-like tensor Y = T(T,U) satisfies the second Bianchi
identity if and only if the scalar-like curvature u = C1(U) is constant.

Proof. By (5.2), the components Y;;ki, of the covariant derivative
VY of Y are given by

(5.5) Yijkin = Tijkin — un€ij (0s18jk — Gindji).

1
n{n—1)
Thus we have

(5.6)
Yiikin + Yijink + Yijni

1
= Tijran + Tijink + Tijnrt — m{fj (wbjr — ukdj)€idin
+ Ej (Uh(sjl — ’U,l(s]'h)&‘i(sik + & (ukéjh — uhéjk)aiéil}.
We suppose that T satisfies the second Bianchi identity T xin + Tijink +
Tijnke = 0. If Y satisfies Yjjxin + Yijink + Yijner = 0. Then we have by

(5.6)
(n - 2)6‘]' (uzdjk - uk5ji) = 0, (n — 1)(n — 2)uz = 0,

from which it implies that the scalar-like curvature u is constant. The
converse is trivial by (5.6). It completes the proof. O
By Lemma 5.2 and Theorem 3.7, we can prove

THEOREM 5.3. Let M be an n(Z 3)-dimensional semi-Riemannian
manifold and let T be the curvature-like tensor and let U be the sym-
metric tensor in D>M. We assume that T satisfies the second Bianchi



154 Jung-Hwan Kwon, Yong-Soo Pyo, and Young Jin Suh

identity. If it satisfies 2C12(VU) = C3(VU), then the following asser-
tions are equivalent:
(a) VU € C*(A @ B).
(b) The concircular curvature-like tensor Y = Y (T,U) satisfies the
second Bianchi identity.
(c) The scalar-like curvature u is constant.

Applying Theorem 5.3 to the case where the concircular curvature
tensor Z, we can verify the following.

THEOREM 5.4. Let M be an n(2 3)-dimensional semi-Riemannian
manifold and let R (resp. S or r) be the curvature tensor (resp. the
Ricci tensor or the scalar curvature) on M. Then the following assertions
are equivalent:

(a) VS € C®(A® B).

(b) The concircular curvature tensor Z satisfies the second Bianchi
identity.

(c) The scalar curvature r is constant.

6. The projective curvature tensor W

This section is devoted to investigate the semi-Riemannian manifold
whose projective curvature tensor satisfies the second Bianchi identity.
Let M be an n-dimensional semi-Riemannian manifold of index s, 0 <
s £ n, with the Riemannian connection V and let R (resp. S or r) be
the Riemannian curvature tensor (resp. the Ricci tensor or the scalar
curvature) on M.

Now, let W be the projective curvature tensor with components W
on M, which is defined by

1
(6.1) Wijkt = Rijr — - €i(Sjrdit — Sjibix).

—1

In the Riemannian manifold whose projective curvature tensor is flat,
there exists a one to one correspondence between this neighborhood and
a domain in a Euclidean space such that any geodesic in the Riemannian
manifold corresponds the straight line in the Euclidean space( See Yano
and Bochner [22] for examples). As it is easily seen, W is the curvature-
like tensor on M.
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REMARK 6.1. If M is Einstein, then the Ricci tensor satisfies (2.6),
which yields that the projective curvature tensor W satisfies
1
Wijki = Rijri — mrﬁj(@ﬂjk — 0ibj1)-
This yields that the projective curvature tensors of Einstein Riemannian
manifolds are the concircular curvature ones [22]. In particular, if M

is of constant curvature, then the projective curvature tensor vanishes
identically.

Now, let T' be the curvature-like tensor and let U be the symmetric
tensor of type (0,2). We put u = Cy5(U). For such a (T,U), we define
the tensor V = V(T',U) with components V;;; by

1
(6.2) Vijer = Tijri — (n—_l)Ei(Ujkail —Ujibir),
which is called the projective curvature-like tensor for T and U. It is

trivial that V' = V(T,U) is the curvature-like tensor. Accordingly, by
(4.1) and (4.2), we have

Viikt + Vikit + Vieiji = Tijir + Tjrir + Thaji-
From this equation and (4.3), we have
(6.3) Vijkt + Vika + Viijo = 0.

Thus we can prove the following.

PRroOPOSITION 6.1. Let M be an n(2 2)-dimensional semi-Riemann-
ian manifold and let T' be the curvature-like tensor and let U be the
symmetric tensor in D?M. Then the projective curvature-like tensor
V = V(T,U) satisfies the first Bianchi identity.

Next, we give a necessary condition for the projective curvature-like
tensor V = V(T,U) which satisfies the second Bianchi identity. Let ®
and ¥y be the curvature-like form and the associated curvature-like form
for V, let ¢y be the Ricci-like form for the symmetric tensor U of type
(0,2) and let 1; be the Weyl form for U defined by vy = ¢y ~ s——<uf,

2(n—1)
where u = C15(U) and 6 is the connection form on M.
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LEMMA 6.2. Let M be ann(2 3)-dimensional semi-Riemannian man-
ifold and let T be the curvature-like tensor and let U be the symmetric
tensor in D*M. If any two assertions in the following ones hold, then
another one holds true:

(a) T satisfies the second Bianchi identity.

(b) The projective curvature-like tensor V. = V(T,U) satisfies the
second Bianchi identity.

(¢} U is the Codazzi tensor.

Proof. By (6.2), the components V;jx;, of the covariant derivative
VV of V are given by

1
(6.4) Vijkin = Tijrin — ——€i(Ujknda — Ujindix).
n—1
Accordingly, we have
(6.5)

Vijkin + Vijink + Vijnri
= Tijrin + Tijink + Tijnrt
+- i 1€z‘{(Ujkz — Ujik)0in + (Ujin — Ujnt)8ike + (Ujnk — Ujkn)dir}-
Suppose that the assertions (a) and (b) hold. Then we have
€i{(Ujrt — Uju)in + (Ujih — Ujni)bix + (Ujnk — Ujin)du} = 0.
Putting ¢ = h, multiplying €; and summing up with respect to the index

i, we have (n — 2)(Ujip, — Ujn) = 0, which means that U is the Codazzi
tensor. The others are trivial. It completes the proof. Ol

We say that (M, g) has the harmonic projective-like tensorif 6(¥y ) =
0. In particular, (M, g) is said to have the harmonic projective tensor if
d(Tw) =0.

THEOREM 6.3. Let M be an n(2 3)-dimensional semi-Riemannian
manifold and let T be the curvature-like tensor and let U be the sym-
metric tensor in D?M. We assume that T satisfies the second Bianchi
identity. If it satisfies 2C12(VU) = Co3(VU), then the following asser-
tions are equivalent:

(a) VU € C>(A).

(b) The projective curvature-like tensor V. = V(T,U) satisfies the
second Bianchi identity.

(c) U is the Codazzi tensor.

(d) The Ricci-like form ¢y satisfies the Codazzi equation.
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Proof. By Theorem 3.4, the assertions (a), (c) and (d) are equivalent.
Also by Lemma 6.2, we see (c)<(b). d

By applying Theorem 6.3 to the case where U = Ric(T), we can give
the condition for (M, g) to have the harmonic projective-like tensor is
given.

COROLLARY 6.4. Let M be an n(2 3)-dimensional semi-Riemannian
manifold and let T be the curvature-like tensor and let U = Ric(T)
be the Ricci-like tensor for T. We assume that T satisfies the second
Bianchi identity. If it satisfies 2C12(VU) = C23(VU), then the following
assertions are equivalent:

(a) VU € C(A).

(b) The projective curvature-like tensor V = V(T,U) satisfies the
second Bianchi identity.

(¢) U is the Codazzi tensor.

(d) The Ricci-like form ¢y satisfies the Codazzi equation.

(e) The associated curvature-like form Wy is closed.

(f) The associated curvature-like form ¥y is coclosed.

(g) (M, g) has the harmonic projective-like tensor.

Proof. By Theorem 4.2, V satisfies the second Bianchi identity if and
only if the form ¥y is closed. Namely the assertions (b) and (e) are
equivalent. Accordingly, in order to prove Corollary 6.4, it is sufficient
to show that (c)<(f). Since T satisfies the second Bianchi identity, we
have

(6.6) ZéhTthh. + Ty — Thrr = 0,
h

where Tj; = >, €xTkijr are the components of the Ricci-like tensor
U = Ric(T) and T are the components of the covariant derivative
VU = V(Ric(T)) of U = Ric(T). Putting i = h, multiplying £; and
summing up with respect to the index 7 in (6.4) and taking account of
(6.6) we have

1
(6.7) ZﬁthJ‘km = ZEhThjklh - —n———T(Tjkl — Tje)
3 h
n—2
= (Tire — Tjin)s

from which it follows that (c)<(f). It completes the proof. O



158 Jung-Hwan Kwon, Yong-Soo Pyo, and Young Jin Suh

For the Riemannian curvature tensor R, the Ricci tensor S = Ric(R),
the scalar curvature r and the projective curvature tensor W are defined
by (6.1). Applying Corollary 6.4 to these situations, we can prove the
following.

THEOREM 6.5. Let M be an n(2 3)-dimensional semi-Riemannian
manifold and let R, S and r be the curvature tensor, the Ricci tensor and
the scalar curvature on M. Then the following assertions are equivalent:

(a) VS € C*(A).

(b) The projective curvature tensor W satisfies the second Bianchi
identity.

(c) S is the Codazzi tensor.

d) The Ricci form ¢g satisfies the Codazzi equation.
e) The associated curvature-like form Vw is closed.
f) The associated curvature-like form ¥y is coclosed.
g) (M, g) has the harmonic projective tensor.

(
(
(
(

Now let us give the following example.

ExXAMPLE 6.1 ([1], [6]). For any integer p (2 2) an indefinite com-
plex hypersurface M (p,A) of a (2n + 1)-dimensional indefinite com-
plex Euclidean space C2"*! of index 2n can be defined as follows; Let
(z%) = (27,27 ,22"+1) = (21,...,2%"*!) be a complex coordinate of
C?7+1 and let ) be a complex number such that |A| = 1. Then M(p, A)
is an indefinite complete complex hypersurface of index 2n defined by

22t = ij(zj +X277), F=nadg, fi(z) =2
J

Then for the components h 45 of the second fundamental form we have

(6.8) hij = p(p = D8izpi" ™%, hiej = plp — DAdip:" 7,
' hieje = p(p — VA2 2, ps =2+ A2,

and then for the components hapc of the covariant derivatives of the
second fundamental form we have

hije = p(p — 1)(p — 2)6:;6: ">,
hijie = p(p — 1)(p — 2)A0i;0ukpi” 2,
hiejor = p(p — 1)(p = 2)A26;; 81",
hi-joke = p(p — 1)(p — 2)X*8;580p,7 2.

(6.9)
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Then the example above is so much related to the following remark.
By the following remark we know that the projective curvature tensor
W for Example 6.1 satisfies the second Bianchi identity.

REMARK 6.2. If the curvature-like tensor T is parallel, then it satisfies
the second Bianchi identity. However, the converse is not necessarily
true. Example 6.1 is the counter example provided p 2 3. In such an
example, by (6.8) we know the following facts: the complex Ricci tensor
of M is flat provided that |A| = 1, but the curvature tensor is not flat.
Accordingly, since the real Ricci tensor is also flat, the scalar curvature
r is zero on M. Also it is seen that if p 2 3, then M is not locally
symmetric.

Similarly, if the projective curvature tensor W is parallel, then it sat-
isfies the second Bianchi identity, However, the converse is not necessary
true. In fact, if p 2 3 and if |A| = 1, then this indefinite complex hy-
persurface M in C2"*! is Ricci flat but not locally symmetric. So the
projective curvature tensor W coincides with the Riemannian curvature
tensor R on M, but it is not parallel, that is VW = VR5#0. However,
it satisfies the second Bianchi identity.

7. The conformal curvature tensor D

In this section we want to investigate the semi-Riemannian manifolds
whose conformal curvature tensor satisfies the second Bianchi identity.
Let M be an n-dimensional semi-Riemannian manifold of index s, 0 £
s < n, with the Riemannian connection V and let R (resp. S or r) be
the Riemannian curvature tensor (resp. the Ricci tensor or the scalar
curvature) on M.

Now, let D be the conformal curvature tensor with components D,k
on M, which is given by

(7.1)
1
Dijri = Rijri — n—_§(61:5jk5u —€iSj10ik + € Subjk — €;Sik051)
T
e ($ubik — Bubi0).
+(n—1)(n—2)81( 105k k]l)

The Riemannian manifold whose conformal curvature tensor is flat is
investigated by Ryan [16], Weyl [18, 19]. See Yano [20, 21] and Yano
and Bochner [22] for examples. As it is easily seen, D is the curvature-
like tensor on M.
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REMARK 7.1. If M is Einstein, then the Ricci tensor satisfies (2.6).
which yields by (2.6) that the conformal curvature tensor D satisfies

T

Dijri = Rijri — Y —

€i; (610 — Oirdj1)-

This yields that the conformal curvature tensors of Einstein Riemannian
manifolds are the concircular curvature ones [22]. In particular, if M
is of constant curvature, then the conformal curvature tensor vanishes
identically.

Now, let T be the curvature-like tensor and let U be the symmetric
tensor of type (0,2). We put u = Cy2(U). For such (T,U), we define
the tensor B = B(T,U) with components B, i by

(7.2)
Bijk = Tiji — -n—_E(&?ink&l —eUjibir + ;Ui — €;Uid51)
u
+ m@j(éildjk — 1),

which is called the conformal curvature-like tensor for T and U. It is
trivial that B is the curvature-like tensor. Calculating straightforward,
by (7.2), we have

Bijki + Bjkit + Briji = Tijr + Tkt + Thaji-
From this equation and (4.3), we have
(7.3) Bijki + Bjgi + Byiji = 0.
Thus we have the following.

PROPOSITION 7.1. Let M be an n-dimensional semi-Riemannian ma-
nifold and let T' be the curvature-like tensor and let U be the symmetric
tensor in D> M. Then the conformal curvature-like tensor B = B(T,U)
satisfies the second Bianchi identity.

First, we give a necessary condition for the conformal curvature-like
tensor B to satisfy the second Bianchi identity. Let ®p and ¥p the
curvature-like form and the associated curvature-like form for B, let ¢y
be the Ricci-like form with the symmetric tensor U of type (0,2) and
let ¥y be the Weyl form for U defined by vy = ¢y — ml_—l)uo, where

u = C12(U) and @ is the connection form on M.
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LEMMA 7.2. Let M be ann(2 3)-dimensional semi-Riemannian man-
ifold and let T be the curvature-like tensor and let U be the symmetric
tensor in D?M. If any two assertions in the following hold, then another
one holds true:

(a) T satisfies the second Bianchi identity.

(b) The conformal curvature-like tensor B = B(T,U) satisfies the
second Bianchi identity.

(¢) U is the Weyl tensor.

Proof. By (7.2), the components B;jxn of the covariant derivative
VB of B are given by

(7.4)
1
Bijkin = Tijrin — —— 2(51‘Ujkh5il — & Ujinbik + €;Uunbjx — €;Uikndj1)
1
e (Gudik — Bikdi).
+(n_1)(n_2)uh87( 195k k]l)
Accordingly, we have
(7.5)
Bijkin + Bijink + Bijnki
= Tijkin + Tijink + Tijni
1 1
+ m[{(Ujkl - Uju) — m%’(szsjk — updji) }eidin
1
+ {(Ujlh - Ujhl) - 2(71—)5]'((]}153'[ - Uléjh)}giéik
1
+ {(Ujhk - Ujkh) — m&j(dejh - Uhfsjk)}gi&il
1
—&;0;k{Uan — Uint) — mei(Uhdil — wbin)}
1
— ;0 {(Uinkc — Uirn) — mgi(Ukéih — uplix) }
1
— ;0 { (Uit — Uux:) — m&(%@% — ugdi)}]
Suppose that (a) and (b) hold. By (7.5), we have
1
(7.6) {Ujrs — Ujir) — mEj(Uz5jk — urdj1) Yeilin
1

+ {(Ujin — Ujn1) — (Undji — widjn) teidik

2n— 1)~
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+ {(Ujnk — Ujkn) — %ITI—)@(UMSM — updjk) eidy

— €50k {(Uin — Uint) — 2—(n1_—1)€i(Uh5u — w6in)}

— €65 {(Uink — Uirn) - '2(71_—1)51;(Uk5ih — upbir)}

— €;6;n{(Uirt — Uax) — Xﬁ}_—ﬂsi(Uldﬂc —ugpdy)} = 0.

Putting ¢ = h, multiplying €; and summing up with respect to the index
i in (7.6), we obtain

(7.7)

(n = 3){(Ujk — Uji) — . )ej(uz5jk —ubj)}

2(n—1

1 1
_ Ejfsjk(z EnUnin — §Ul) + ejdﬂ(z enUnkn — 5Uk) -0
h h

Again, putting j = [, multiplying ¢; and summing up with respect to
the index j in (7.7), we obtain

(78) 2zslUlkl = Uk,
l
from which together with (7.7) it follows that we get
1
(Ujkl - Uﬂk) — m&j(’dlé]’k — uk(s]l) = 0.
Thus, this means that U is the weyl tensor and the assertion (c) is
derived. The others are trivial. It completes the proof. O

We say that (M, g) has the harmonic Weyl-like tensor if §(¥p) =
0. In particular, (M,g) is said to have the harmonic Weyl tensor if
§(¥p) = 0.

LEMMA 7.3. Let M be an n(2 4)-dimensional semi-Riemannian man-
ifold and let T be the curvature-like tensor and let U be the symmetric
tensor in D?M. We assume that T satisfies the second Bianchi identity.
IfU = Ric(T), then the following assertions are equivalent:

(a) The associated curvature-like form Vg is closed.

(b) The associated curvature-like form Vg is coclosed.

(¢) (M, g) has the harmonic Weyl-like tensor.
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Proof. By Theorem 4.2, under the assertion (a) the symmetric ten-
sor U is the Weyl tensor. So we have 2C12(VU) = Co3(VU), ie.,
2> exUkj = Y, €xUkkj. Moreover, by Lemma 7.2, the conformal
curvature-like tensor B satisfies the second Bianchi identity.

As the first step of the proof, we show (a)=>(b). Since the tensors B
and T satisfy the second Bianchi identity. Putting ¢ = [, multiplying e;
and summing up with respect to the index ¢ in (7.2), we have Bji =
Tk —Ujk, where Bjy, = >, €;Byji; and T, = Y-, &; T} j; are components
of the tensors Ric(B) and Ric(T). By the assumption Ric(T) = U, we
have Tj, = Uj, which means that B, = 0, from which together with
the fact that B satisfies the second Bianchi identity, it follows that we
obtain », €, Bpjrin = 0. It yields that (b) is derived. Conversely, we
assume the property (b). Putting i = h, multiplying £; and summing
up with respect to the index ¢ in (7.4) and taking account of the fact
Bjr = 0, we have

1
(n—-1)(n-2)

1
- m{Ujkl —Ujie + Ej(z ernUnindjr — ZEhUhkhfsjl)}
h h

Zehthklh = T — Ty + e (U6 — urdyi)
h

1

= ——5 1 =3)Uj = Uju) - &0 enUnnbix — Y enlUnindsn)
h n

1
+——ei(wdjn —ukdp)} =0,

where the last equality is derived from the assumption (b). Putting
J = [, multiplying £; and summing up with respect to the index j in
the above equation, we have 23", £xUijr = >, €xUks;. From these two
equations, we have

Uikt — Ujie — ej(wbjr — updj) =0,

1
2(n—1)
from which it follows that (b)=-(a). It completes the proof. O

LEMMA 7.4. Under the situation of Lemma 7.2, if Ric(T) is the Co-
dazzi tensor, then U is the Codazzi tensor if and only if ¥ g is closed.
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Proof. Putting ¢ = h in (7.4), multiplying ¢; and summing up with
respect to the index ¢, we have

1
S enBrjin = — — = (Usi — Uj
d enBhjrin — (Ujkt — Ujix)

n—3 ‘
2(n—1)(n — 2)€J(

+ w0k —ukdjl).

If d¥g = 0, then we get (Ujkl — Ujlk) = ﬁ;?’l—)sj(uléjk — ukéjl), and
hence we have uy = 0 and Ujp — Ui, = 0. If Ujpr — Uy = 0, then
ur = 0 and hence we obtain d¥ g = 0. It completes the proof. 0

REMARK 7.2. By Lemma 7.3, if the conformal curvature-like tensor
B vanishes identically on M, then U is the Weyl tensor. This yields,
in Riemannian geometry, the well known result that the conformal cur-
vature tensor D = 0 implies that S is the Weyl tensor (see Yano and
Kon [23]). However, the converse on the Riemannian manifold does not
necessarily hold. Example 6.1 shows its counter meaning. In such an
example, since components of the second fundamental form is given by
(6.8), the following facts can be guaranteed ; the complex Ricci tensor
S of M is flat provided |A| = 1, but the curvature tensor R is not flat.
Accordingly, since the real Ricci tensor is also flat, the scalar curvature
is zero on M, which means that S is the Weyl tensor. However we have
D=R#0.

The direct consequence of Lemmas 7.3 and 7.4 we can prove the
following.

THEOREM 7.5. Let M be an n-dimensional semi-Riemannian mani-
fold and let T be the curvature-like tensor and let U = Ric(T) be the
Ricci-like tensor for T. We assume that T satisfies the second Bianchi
identity. If n 2 4, then the following assertions are equivalent:

(a) VU € C>=(A).

(b) The conformal curvature-like tensor B = B(T,U) satisfies the

second Bianchi identity.

(c) U is the Codazzi tensor.

(d) The Ricci-like form ¢y satisfies the Codazzi equation.

(e) The associated curvature-like form Vg is closed.

(f) The associated curvature-like form ¥ g is coclosed.

(g) (M, g) has the harmonic-like curvature.
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For the Riemannian curvature tensor R, the Ricc tensor S = Ric(R)
and the scalar curvature r, we can define the conformal curvature tensor
D defined by (7.1). Applying Lemma 7.3 and Theorem 7.5 to these
situations, we can prove the following:

THEOREM 7.6. Let M be an n-dimensional semi-Riemannian mani-
fold and let R and S be the curvature tensor and the Ricci tensor on
M. If n 2 4, then the following assertions are equivalent:

(a) VS € C*(ADI).

(b) The conformal curvature tensor D satisfies the second Bianchi
identity.

(c) S is the Weyl tensor.

(d) The Weyl form v satisfies the Codazzi equation.

(e) The associated curvature-like form W, is coclosed.

(f) (M, g) has the harmonic Weyl tensor.

COROLLARY 7.7. Let M be an n-dimensional semi-Riemannian man-
ifold and let R, S and r be the curvature tensor, the Ricci tensor and
the scalar curvature on M. If n 2 4 and if r is a constant, then the
following assertions are equivalent:

(a) VS € C>*(A).

(b) The conformal curvature tensor D satisfies the second Bianchi
identity.

(c) S is the Codazzi tensor.

(d) The Ricci form ¢g satisfies the Codazzi equation.

(e) The associated curvature-like form W p is closed.

(f) The associated curvature-like form U, is coclosed.

(g) (M, g) has the harmonic curvature.

REMARK 7.3. As it is well known theorem due to Weyl [18, 19], if
the conformal curvature tensor D = 0 and if n 2 4, then the Ricci
tensor S is the Weyl tensor. The terminology “Weyl tensors” is named
after this property (see Yano and Kon [23]). Conversely, according to
Theorem 7.6, if S is the Weyl tensor and if n 2 4, then D satisfies the
second Bianchi identity. If D = 0, then it is trivial that it satisfies the
second Bianchi identity. Thus Theorem 7.6 is a generalization of Weyl’s
theorem.

REMARK 7.4. As it was shown in Example 6.1 and Remark 6.2, if
p Z 3, then the Ricci tensor of the indefinite complex hypersurface
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M in C?7+! ig flat, but it is not locally symmetric. So the conformal
curvature tensor D coincides with the Riemannian curvature tensor R
on M, because the scalar curvature r is also vanishing. But we know
that it is not parallel, that is, VD = VR+#0. However, it satisfies the
second Bianchi identity.
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