DOI QR코드

DOI QR Code

Optical power splitters and optical intensity modulators utilizing Strain-Optic Waveguides of LiNbO3

LiNbO3의 스트레인광학형 광도파로를 이용한 세기 광 변조기와 광 파워 분배기

  • 정홍식 (홍익대학교 전자전기컴퓨터공학부)
  • Published : 2003.02.01

Abstract

Fabrication process of strain-induced channel waveguides in $LiNbO_3$ was developed using strain-optic effect and compressional strain due to ~1.4 $\mu\textrm{m}$ surface Mo/Pt metal film. Characterization of the channel waveguides revealed a single transverse and depth mode in both TE and TM polarizations. Measurements showed total insertion loss of 6.2 and 7.7 ㏈/cm for TM and TE polarizations. respectively. Electro-optic intensity modulators with 11 mm long electrode length and 21 $\mu\textrm{m}$ electrode gap at $\lambda$ = 1.15 ${\mu}{\textrm}{m}$have been produced in $LiNbO_3$ substrates using strain-induced channel waveguides. Modulation depth of 100% at $\pi$-radian voltage of 16.1V has been demonstrated. Also, 1$\times$2 on/off power splitters at $\lambda$ = 0.63 $\mu\textrm{m}$ have been produced using strain-induced channel waveguides. On/off voltage of $\pm$ 25V has been demonstrated.

$LiNbO_3$의 스트레인광학효과와 ~l.4$\mu\textrm{m}$ 두께 이상으로 증착된 Mo(molybdenum)/Pt(platinum) 금속 박막으로부터 발생되는 압축스트레인을 이용하여 채널 광도파로 제작 공정을 개발하였다. 제작된 광도파로는 단일모드로 관찰되었으며, 삽입 손실이 TE, TM 입사 편광모드 각각에 대해서 6.2, 7.7 dB/cm로 측정되었다. 전극 길이와 간격이 11 mm, 21 $\mu\textrm{m}$인 광변조기를 스트레인광학형 광도파로 구조를 이용하여 제작하였으며, $V_{\pi}$= 16.1 V와 100% 변조 깊이가 1.55$\mu\textrm{m}$ 파장 영역에서 측정되었다. 또한 1$\times$2광 파워 분리기를 제작한 결과 0.63$\mu\textrm{m}$ 파장 영역에서 on/off 특성이 $\pm$25V에서 관찰되었다.

Keywords

References

  1. J. Appl. Phys. v.49 no.7 Optical properties in titanium-diifused $LiNbO_3$ strip waveguide M. Fukuma;J. Noda;H. Iwasaki https://doi.org/10.1063/1.325409
  2. J. Lightwave Technol. v.LT-7 no.2 Enhancement of refractive index in $Ti:LiTaO_3$ optical waveguide by Zn vapor diffusion H. S. Jung;O. Eknoyan;H. F. Taylor
  3. Applied Physics Letters v.26 no.11 Optical waveguides in $LiNbO_3$ by ion exchange technique Manhar L. Shah https://doi.org/10.1063/1.88014
  4. Appl. Phys. Lett. v.60 no.4 Strain induced optical waveguides in lithium niobate, lithium tantalate, and barium tianate O. Eknoyan;H. F. Taylor;Z. Tang;V. P. Swenson;J. M. Marx https://doi.org/10.1063/1.106672
  5. IEEE Photonics Technol. Lett. v.8 no.8 GHz-bandwidth optical intensity modulation in self-poled waveguides in strontium barium niobate(SBN) J. M. Marx;O. Eknoyan;H. F. Taylor;R. R. Neurogaonkar https://doi.org/10.1109/68.508725
  6. Proc. SPIE 3728 SBN photonic devices M. A. Fardad
  7. Appl. Phys. Lett. v.67 no.10 Electro-optic modulation and self-poling in strain-induced waveguides in barium strontium niobate J. M. Marx;O. Eknoyan;H. F. Taylor;Z. Tang https://doi.org/10.1063/1.115540
  8. Appl. Phys. Lett. v.66 Low-loss straininduced optical waveguide in strontium barium niobate ($Sr_{0.6}Ba_{0.4}Nb_2$) at $1.3\;{\mu}m$ wavelength J. M. Marx;Z. Tang;O. Eknoyan;H. F. Taylor;R. R. Neurogaonkar https://doi.org/10.1063/1.113515
  9. Electron. Lett. v.35 no.3 Low-voltage electro-optic modulator in SBN:60 O. Kwon;O. Eknoyan;H. F. Taylor;R. R. Neurogaonkar https://doi.org/10.1049/el:19990140
  10. J. Appl. Phys. v.50 no.7 Photoelastic waveguides and their effect on strip geometry GaAs/Gal-xAlxAs lasers P. A. Kirkby;P. R. Selway https://doi.org/10.1063/1.326563
  11. Optical Engineering v.40 no.8 Electro-optic intensity modulators at λ=1.55㎛ utilizing strain-optic effects in LiNbO₃ H. S. Jung;O. Eknoyan;H. F. Taylor https://doi.org/10.1117/1.1386369