DOI QR코드

DOI QR Code

On-axis servo control in pickup actuator for disk type holographic data storage

디스크 형 홀로그램 정보저장장치를 위한 광축상 서보 컨트롤

  • Kim, Sung-Phil (Micro Optics National Research Laboratory, Department of Physics, Hanyang University) ;
  • Song, Seok-Ho (Micro Optics National Research Laboratory, Department of Physics, Hanyang University) ;
  • Oh, Cha-Hwan (Micro Optics National Research Laboratory, Department of Physics, Hanyang University) ;
  • Kim, Pill-Soo (Micro Optics National Research Laboratory, Department of Physics, Hanyang University) ;
  • Kim, Ji-Deog (Samsung Advanced Institute of Technology) ;
  • Lee, Hong-Seok (Samsung Advanced Institute of Technology)
  • 김성필 (한양대학교 물리학과 마이크로광학 국가지정연구실) ;
  • 송석호 (한양대학교 물리학과 마이크로광학 국가지정연구실) ;
  • 오차환 (한양대학교 물리학과 마이크로광학 국가지정연구실) ;
  • 김필수 (한양대학교 물리학과 마이크로광학 국가지정연구실) ;
  • 김지덕 (삼성전자㈜ 종합기술원) ;
  • 이홍석 (삼성전자㈜ 종합기술원)
  • Published : 2003.02.01

Abstract

In order to read correct data from a disk-type holographic storage medium, it is very important to implement a servo-control in the pick-up module, as in a conventional CD-ROM. We propose a novel servo-control method using a glass plate on the optical axis, which is able to compensate the mechanical errors coming from wobbling of holographic disk and spindle motor. By rotating the glass plate within $\pm$10 degrees, we can reduce the reading errors of $\pm$200 ${\mu}{\textrm}{m}$ to $\pm$15 ${\mu}{\textrm}{m}$.

대용량 홀로그램 정보저장장치를 현재의 CD-ROM과 같이 디스크 형으로 구현하는데 있어서, 저장된 데이터를 정확하게 읽어내기 위한 픽업 모듈의 서보 컨트롤은 매우 중요하다 디스크 및 회전 모터의 요동에서 오는 기계적 오차를 보정하기 위해, 데이터 재생 시 광축상에 한 장의 평판유리를 사용하는 새로운 서보 컨트롤 방식을 제안하였다. 평판유리를 $\pm$$10^{\circ}$이내에서 회전시킴으로써, $\pm$200 $\mu\textrm{m}$ 정도의 오차범위를 $\pm$150 $\mu\textrm{m}$ 이내로 컨트롤하여 재생오차를 92.5% 이상 줄일 수 있었다.

Keywords

References

  1. Applied Optics v.13 no.4 Experimental holographic read-write memory using 3-D storage L. d'Auria;J. P. Huignard;C. Slezak;E. Spitz https://doi.org/10.1364/AO.13.000808
  2. Optics Letters v.21 no.12 System metric for holographic memory systems F. H. Mok;G. W. Burr;D. Psaltis https://doi.org/10.1364/OL.21.000896
  3. Optical Engineering v.34 no.8 Volume holographic memory systems: techniques and architectures J. H. Hong;I. McMichael;T. Y. Chang;W. Christian;E. G. Paek https://doi.org/10.1117/12.213214
  4. J. Opt. Soc. Am. A v.12 no.9 Alignment sensitivity of holographic three-dimensional disks H.-Y. S. Li;D. Psaltis https://doi.org/10.1364/JOSAA.12.001902
  5. Applied Optics v.35 no.14 High-density recording in photopolymer-based holographic three-dimensional disks A. Pu;D. Psaltis https://doi.org/10.1364/AO.35.002389
  6. Optics Letters v.25 no.10 Distortion in pixel-matched holographic data storage due to lateral dimensional change of photopolymer storage media R. M. Shelby;D. A. Waldman;R. T. Ingwall https://doi.org/10.1364/OL.25.000713
  7. Optics Letters v.27 no.7 Holographic data storage with arbitrarily misaligned data storage G. W. Burr https://doi.org/10.1364/OL.27.000542
  8. Applied Optics v.35 no.14 Compact holographic storage demonstrator with rapid access I. McMichael;W. Christian;D. Pletcher;T.Y. Chang;J. H. Hong https://doi.org/10.1364/AO.35.002375
  9. U. S. Patent 5982513 Method and system to align holographic images G. Zhou
  10. Introduction to Fourier Optics J. W. Goodman
  11. Optics E. Hecht;A. Zajac
  12. Fundamentals of Photonics B. E. A. Saleh;M. C. Teich
  13. IEEE Journal of Quantum Electronics v.QE-8 no.3 Astigmatically compensated cavities for CW dye lasers H. W. Kogelnik;E. P. Ippen;A. Dienes;C. V. Shank