DOI QR코드

DOI QR Code

Grain Boundary Microcracking in ZrTiO4-Al2TiO5 Ceramics Induced by Thermal Expansion Anisotropy

  • Kim, Ik-Jin (Institute for Processing and Application of Inorganic materials(PAIM), Department of Materials Science and Engineering, Hanseo University) ;
  • Kim, Hyung-Chul (Institute for Processing and Application of Inorganic materials(PAIM), Department of Materials Science and Engineering, Hanseo University) ;
  • Lee, Kee-Sung (Energy Materials Research Team, Korea Institute of Energy Research(KIER)) ;
  • Han, In-Sub (Energy Materials Research Team, Korea Institute of Energy Research(KIER))
  • Published : 2003.02.01

Abstract

The grain-boundary microcracking materials in the system $Al_2$TiO$_{5}$ -ZrTiO$_4$(ZAT) is influenced by the thermal expansion anisotropy. The range of ZAT compositions investigated had showed very low thermal expansions of 0.3~1.3$\times$10$^{-6}$ K loin compared to 8.29$\times$10$^{6}$ K of pure ZrTiO$_4$and 0.68$\times$10$^{6}$ K of polycrystalline $Al_2$TiO$_{5}$ , respectively, compared with the theoretical thermal expansion coefficient for a single crystal of $Al_2$TiO$_{5}$ , 9.70$\times$10$^{6}$ K. The low thermal expansion and microcraking temperature are apparently due to a combination of thermal contraction and expansion caused by the large thermal expansion anisotropy of the crystal a ies of the $Al_2$TiO$_{5}$ phase.

Keywords

References

  1. Acta Cryst. v.B28 Structure Studies on$Al_2TiO_5$at Room Temperature and at$600^{\circ}C$ Morosin;R. W. Lynch
  2. J. Am. Ceram. Soc. v.70 no.8 Grain Boundary Microcracking due to Thermal Expansion Anisotropy in Aluminium Titanate Ceramics Y. Ohya;Z. Nakagawa
  3. J. Less. Common. Met. v.24 no.2 Thermal Expansion Characteristics and Stability of Pseudobrookite Type Compounds$M_3O_5$ G. Bayer https://doi.org/10.1016/0022-5088(71)90091-9
  4. J. Am. Ceram. Soc. v.56 no.8 Influence of Grain Size on Effects of Thermal Expansion Anisotropy in$MgTi_2O_5$ J. K. Kuszyk;R. G. Bradt https://doi.org/10.1111/j.1151-2916.1973.tb12714.x
  5. J. Am. Ceram. Soc. v.61 no.11-12 Grain Size/Microcracking Relations for Pseudobrookite Oxides I. J. Cleveland;R. C. Bradt https://doi.org/10.1111/j.1151-2916.1978.tb16121.x
  6. Canadian Metallurgical Quarterly v.39 no.4 Thermal Shock Resistance and Thermal Expansion Behaviour with Compostion and Microstructure of $Al_2TiO_5$ Ceramics I. J. Kim;H. S. Kwak https://doi.org/10.1179/000844300794388688
  7. J. Am. Ceram. Soc. v.C18 Investigation of the Phase Transformation in$ZrTiO_4$and$ZrTiO_4-SnO_2$Solid Solutions A. H. Michale;R. S. Roth
  8. J. Am. Ceram. Soc. v.73 no.4 $Al_2TiO_5-ZrTiO_4-ZrO_2$Composites : A New Family of Low-thermal-expansion Ceramics F. J. Parke https://doi.org/10.1111/j.1151-2916.1990.tb05138.x
  9. Trans AIME v.197 R. L. Fullman
  10. Ceram. Age v.60 Thermal Expansion Hysteresis of Aluminiumn Titanate W. R. Buessem;N. R. Thielke;R. V. Sarakauskas
  11. J. Am. Ceram. Soc. v.5 no.5 Acoustic Emission of Aluminium Titanate R. E. Wright
  12. Kor. J. of Ceram. v.2 no.4 Effect of Grain Size on the Thermomechanical Properties of$Al_2TiO_5$Ceramics I. J. Kim;O. S. Kweon;Y. S. Ko;C. Zogarfou
  13. J. of Kor. Ceram. Soc. v.35 no.10 Thermal Shock Resistance of$Al_2TiO_5$Ceramics Prepared from Electrofused Powders I. J. Kim;C. Zogarfou