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ABSTRACT

Blind channel estimation of communication channels is a problem of important current theoretical
concerns. Recently proposed solutions for this problem exploit the diversity induced by antenna array
or time oversampling, leading to the so-called, second order statistics techniques. This paper proposes
the blind adaptive channel estimation using multichannel linear prediction method. Computer simulations
are presented to compare the proposed algorithm with the existing ones.
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1. Introduction

In recent years, the interest in blind channel
estimation problem has received considerable at-
tention. The basic blind channel estimation prob-
lem involves the channel model where only the
observation signal is available for processing in the
estimation channel. Earlier blind channel esti-
mation approaches mostly depend on higher order
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statistics (HOS), because the second order sta-
tistics (SOS) does not contain phase information
for stationary signal [1,2]. Using HOS-based meth-
ods, it has been shown that the performance index
as the optimization criterion is nonlinear with
respect to estimation parameters and these meth-
ods require a large amount of data samples.
Therefore, these methods have the disadvantage
that their computational complexity may be large.
See, for example, [1] and references therein.
Since the seminal work by Tong et al. the
problem of estimating the channel response of

multiple FIR channel driven by an unknown input
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symbol has interested many researchers in signal
processing and communication fields. This is
achieved by exploiting assumed cyclostationary
properties, induced by oversampling or antenna
array at the receiver part [1,3]. Up to date, the
implementation of SOS based methods has been
mostly block based algorithm rather than adaptive
algorithms. Most communication channels are
time-varying in practice. Therefore, the algorithms
should be able to track the change of the channel
impulse response. Moreover, in a fast fading
channel, the multipath channels in wireless com -
munications vary rapidly, and we only have a few
data samples corresponding to the same channel
characteristics.

In this paper, the blind channel estimation is
proposed by exploiting multichannel linear pre
diction error method. It can be implemented adap
tively using RLS- or LMS-like algorithm. Most
notations are standard: vectors and matrices are
boldface small and capital letters, respectivelys: the
matrix transpose, and the Hermitian are denoted
by s and O respectively: £ is the statistical
expectation. This paper is organized as follows. In
section 2, we review the blind channel estimation
problem. A blind channel estimation method based
on multichannel lnear prediction and adaptive
implementation is proposed in section 3. Simulation
results are performed in section 4. Section 5 con

cludes our results.

2. Problem Formulation

Let x(¢) be the signal at the output of a noisy
channel

x(1)= D s(k)h(t —kT) +v(r)
k=—o (1)
where s(k) denotes the transmitted symbol at time
kT, h(t) denotes the continuous-time channel
impulse response, and v(t) is additive noise. The

fractionallv-spaced discrete-time model can be

obtained either by time oversampling or by the
sensor array at the receiver [1,2]. The oversampled
single-input single-output (SISO) model results
single-input multi-output (SIMO) model as in Fig.
1. The corresponding SIMO model is described as

following

x,(n)= Sh,(k)s(n ~k)y+vi(n)=a,(n)+v,(n), i=1,---,P
k=0
(2)

where P is the number of subchannel, and L is the
maximum order of the each subchannel.

Let

x(n) = [x,(n), -+, x,(m)]"
h(n) = [k, (n),~, hp (W]
v(n) = [v| (n),' 5 Vp (n)]T 3

We represent xi(n) in a vector form as

x(n) = is(k)h(n -k)+v(n)
_a(n)+v(n) )

Stacking N received vector samples into an NP

X1 vector, we can write a matrix equation as

xy(n)=Hs(n)+ v, (n) (5)

where H is an NPX(N+L-1) block Toeplitz
matrix, s{n) is (N+L) X1, xx(n), and va{n) are NP

X1 vectors,

s(n)=[s(n),,s(n—L-N+2)T"
Xy(n)=[x"(n),-,x" (n= N+ 1)’
vy(my=[v (), , vV (n—-N+DJ (6)

v,(n)

() % x,(n)

s(n) .

— : vp(n)

hp(n) ap_(")é_’ xp(n)

Fig. 1 Equivalent SIMO model with P subchannels
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and

() - h(L=1) - 0
H=| ¢ . i T
0 - h©) - h(L-1) (7

We assume the following throughout in this

paper about the channel and source conditions [2].

» Assumption 1: Subchannels do not share
common zeros, i.e., they are coprime.

+ Assumtions 2: The noise v(n) is zero mean,
white with known covariance, no cochannel cor-
relation, and uncorrelated with source signal.

Assumption 1 provides the necessary and
sufficient condition to the unique solution for the
blind channel estimation problem. This condition
has been regarded as the major difficulty of blind
algorithms using the SOS. The assumption that L
is known may be practical. To address this
problem, there are three approaches [2].

Many recent blind channel estimation methods
exploit subspace structure of the received signal.
They are attractive because of the closed-form
estimation. On the other hand, they may not be
robust against modeling error. Also, they are often
more computationally expensive. It is well known
that all blind identification methods suffer from a
possible scale ambiguity. Therefore, some con-
straint must be imposed while minimizing some
cost function as described in [9] and [10]. In [9],
the algorithm has been developed based on linear
constraint. In [10], it has been shown that the cost
function is a quadratic form and has the unique
solution. To achieve blind channel estimation, a
cost function as mean square error (MSE) of
subchannel output signal. The main problem of the
subspace method is that the channel order L cannot
be over estimated. Furthermore, for finite samples,

this algorithm may be biased [2].

3. Proposed Algorithms

As described earlier, subspace method may not

robust against modeling order overestimation.

Linear prediction-based method does not require
the exact channel order L, thus it is robust against
overestimation of the channel order. In this section,
a new approach is proposed that is based on

multichannel linear prediction.

3.1 Multichannel Linear Prediction

Consider the noise-free case. For convenience,
we can rewrite (2) as

5,(n)

x,(n) = Hs(n) =[H, H, H,]|s,(n)

s,(n) 8
where H; is of dimension NP Xd, the NP X1
vector Hz is the (d+1)th column of H, and the last
part of H is denoted by Hs with dimension NP X
(N+P-d-1) [4]. An NP X1 multichannel linear

prediction error vector can be obtained as [4]

o) =01 - Pl(nn[x "N(”’d)} =Hys,()

M(n_

9)

where Pi(n) is an NPXMP matrix. xy(n) id
defined in (6), and xa(n-d) is defined as

x(n'—d)

X, (n-d)= :
x(n—-d-M+1) 10

The optimal P; is obtained by minimizing as

following cost function

J, =t E[f, (mf" ()] (11)

Letting the partial derivative of (11) with respect
to P equals to zero and we get as

P, =[E[x,, (n—d)xy (n— )" E[xy(n)x,,(n—d)]

(12
Consider another multichannel linear prediction
problem
o Xy (n)
fz(n)_[l Pz(n)][:XM (n—d—l)]
s,(n)
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The proof is again provided in [4]. Compared
with (11) and (12), we can know that the optimal

P2 is obtained as following

P, =[E[x,,(n—d - Dx? (n—d - DI]" E[x, (n)x,, (n—d - 1)]
(14)

In order to consider H»,, we can compute

f(n) =1,(n)—f,(n) = H,s,(n) (15)
Then, we know that
E[f(mf" ()] = o]H,H] = HdH(d) (1)

The rank of matrix Ef(" (] is one. Therefore,
H(d) is the singular vector corresponding to the
largest singular value of matrix EF(DE (0], If the
d equals channel length, then we can obtain
channel coefficient since H. is just the channel

coefficients vector.

3.2 Adaptive Algorithms

We propose the adaptive algorithms for updating
the multichannel linear prediction error filter
coefficients. Two multichannel linear prediction
problems are required in estimating the channel
coefficients. We are required to compute the
multichannel prediction matrices in (12) and (14)
and to estimate the multichannel prediction errors
in (9), (13), and (15). For fast convergence, we can
use the RLS algorithm to update the multichannel

linear prediction as following

» Compute multichannel linear prediction error

vector:

f(n)=x,(n)—-P(n-1)x,(n—d)
f,(n)=xy(n) - Py(n-Dx,(n—-d-1) (17)

* Compute Kalman gain:

Q,(n-1)x,,(n-d)
l+xZ(n—d)Q,(n—1)xM(n—d)
Q,(n=D)x, (n—d ~1)
A+x2(n—d-1)Q,(n-x,(n—-d-1)

Kl(”) =

K,(n)=

(18

« Update inverse of the correlation matrix:
Q,(n)=27'Q,(n =) - 27K, (m)xy; (n - d)Q,(n)
Q,(n)=47'Q,(n 1)~ A7K, (n)x; (n—d -1)Q,(n)

(19

» Update multichannel linear prediction coef-

ficient matrix:

P(n)=P(n-1)+ fl(n)Kf" (n)
P,(n) = P,(n—1) +£,(n)K7 (n) (20

» Compute another prediction error vector:
f(n) =£,(n)—1,(n) @1

The term A (0< A <1) is intended to reduce the
effect of past values on the statistics when the
filter operates in non-stationary environment. It
affects the convergence speed and the tracking
accuracy of the algorithm [6]. From the covariance
matrix of in (16), its estimation of adaptive manner

1s given by
F(n) = AF(n -+ f(n)f" (n) (22)

The multichannel linear prediction problems can
be computed by an LLMS algorithm. The first one
can be updated by

f(n)=x,(n)-P(n-Dx,(n-d)
f,(n)=x,(n)-P,(n-Dx,,(n—d-1) (23)

The second one is updated by

P (n)=P(n-1D)+ puf(n)x (n-d)
P,(n) = P,(n =)+ pf,(n)x; (n—d - 1) (24)

3.3 Crosscorrelation Vector Estimation

A simple iterative algorithm known as the power
method can be used to find the largest eigenvector
and its associated eigenvector [7,8]. Let F be a
matrix with eigenvalues ordered as 41> A.=2L=
A np, with corresponding eigenvectors ey, e:L, exp.
Let e(0) be a normalized vector that is assumed
to be not orthogonal to e;. The vector e(0) can be

written in terms of the eigenvector as
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e(0)=ae +ae, + - +a,e,, (25)

for some set of coefficient a;, where a;=0. We

define the power method recursion by

L is known. The performance index is achieved by
examining the root mean square error (RMSE).

nhu Z"

(31)

where N is number of Monte Carlo trials, h is
the optimal channel coefficients, and h; is the
estimate of the channels from the ith trial. For
simulations, we use the real-measured channel
which is a length-16 version of an empirically
measured (7/2)-spaced digital microwave radio
channel P=2 with 230 taps, which we truncate to
obtain a channel with L=7. The Microwave channel

_ chanl.mat is founded at http://spib.rice.edu/spib,

microwave.html. The shortened version is derived

e(n+1)=—en)_
| Fe(n)|| (26)
Then
_Al Ayp Anp.
e(l)= Fe(0) al,{‘(e T 4 Aez+ e a A e,,,,)
IFe(0)|| [ Fe(O) ||
torls]
Fe(l) al,{'[el+a,(ﬂ,] e, 4+ ) ey
e(2) = -
ItFe())}) I Fe() }f
kY, o o)
Fe(n - 1) a‘}’[eﬁ'ﬂ(%) T, (1- ] e"PJ
e(n) = =
| Fe(n - 1) || | Fe(n-1){)
(27)
Because of the ordering of the eigenvalues, as
n—©oo
e(n) - ae, (28)

which is the eigenvector of F corresponding to the
largest eigenvalue. The eigenvalue itself is found
by a Rayleigh quotient.

e’ (n)Fe(n) >4
lle(m || (29)

Therefore, we can estimate the channel coef-

ficients vector as following
A(d) = [Ze(n) (30)

4. Simulation Results

Computer simulations are conducted to evaluate
the performance of the proposed algorithm in
comparison with existing algorithms. For all
simulations, two channel SIMO model is assumed.
The input signal is 16-QAM and additive noises
are i.i.d. zero mean circular Gaussian. We use the

SNR defined as EWaIPYENv(IF] For simplicity

of comparison, we assume that the channel order

by linear decimation of the FFT of the full-length
(T/2)-spaced impulse response and taking the
IFFT of the decimated version (see (5] for more
details on this channel). The total number of 50
independent trials is performed.

Fig. 2 shows the RMSE of the channel estimates

RMSE cueves, SNR=20d8

10

Higa [10] Heath [9]

oy
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Proposed
107 s
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\ Higa[10] |
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RMSE (dB]
S

0 500 1000 1500 2000
Samples

Fig. 2 RMSE comparison of the proposed and
existing algorithms
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from existing algorithms and the proposed algo-
rithm under SNR=20dB and SNR=30dB, respec-
tively. From these figures, we can see that the
proposed algorithm performs better than the
others. Fig. 3 shows the 50 estimates of the channel
under SNR=20dB and SNR=30dB, respectively. In
these figures, solid line denotes the original
channel, dotted line denotes the averaged esti-
matesstandard deviation, and the square symbol
represents the mean value of the 50 estimates. Fig.
4 presents the RMSE performance after 2000
samples for the several order of estimator for the
proposed algorithm. From Fig. 4, we can conclude
that the exact order is not needed in the proposed
algorithm.

5. Conclusion

This paper presents the new method for blind

channel estimation based on multichannel linear

SNR=20dB

— Oplimal weight

Magnitude
<
n

SNR=30dB
— Optimal weight
o Mean of 50 estimates

e Avsm;adv" standard deviati

Magnitude

Tap

Fig. 3 Magnitude of the estimated channel under
SNR=20dB and SNR=30dB at 50 trials.

RMSE Curves vs Order, SNR=30dB
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Fig. 4 RMSE value versus order.

prediction. Simulation results have demonstrated
the performance improvement of the proposed
algorithm. In comparison with other algorithms,
the proposed one seems to be more efficient in a
low SNR channel and much more accurate. Our
future works include the extension to blind multi-
input multi-output (MIMO) channel estimation and
the development of the MIMO equalization problem.
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