Biotransformation of a Fungicide Ethaboxam by Soil Fungus Cunninghamella elegans

  • PARK, MI-KYUNG (School of Agricultural Biotechnology, Seoul national University) ;
  • KWANG-HYEON LIU (Department of Pharmacology, Inje university College of Medicine) ;
  • YOONGHO LIM (Department of Pharmacology, Inje university College of Medicine) ;
  • YOUN-HYUNG LEE (Plant Metabolism Research Center, Kyung Hee University) ;
  • HOR-GIL HUR (Department of Environmental Science & Engineering, Kwangju Institute of Science & Technology) ;
  • JEONG-HAN KIM (School of Agricultural Biotechnology, Seoul national University)
  • Published : 2003.02.01

Abstract

Metabolism of a new fungicide ethaboxam by soil fungi was studied. Among the fungi tested, Cunninghamelia elegans produced metabolites from ethaboxam, which were not found in the control experiments. M5, a major metabolite from ethaboxam was firmly identified as N-deethylated ethaboxam by LC/MS/MS and NMR. N-Deethylated ethaboxam has been found as a single metabolite in in vitro metabolism with rat liver microsomes. Ml was proved to be 4-ethyl-2-(ethylamino)-1,3-thiazole-5-carboxamide (ETC) by comparing with the authentic compound. In addition, M2, M3, and M4, and M6 were tentatively Identified by LC/MS/MS as hydroxylated and methoxylated ethaboxams, respectively. Production of the major metabolite, N-deethylated ethaboxam, by the fungus suggested that C. elegans would be an efficient eukaryotic microbial candidate for evaluating xenobiotic-driven mammalian risk assessment.

Keywords

References

  1. Biodegradation v.3 Biodegradation of polycyclic aromatic hydrocarbons Cerniglia C. E. https://doi.org/10.1007/BF00129093
  2. Arch. Biochem. Biophy. v.186 Metabolism of naphthalene by cell extracts of Cunninghamella elegans Cerniglia C. E.;D. T. Gibson https://doi.org/10.1016/0003-9861(78)90471-X
  3. Z. Allg. Mikrobiol. v.13 Crude oil degradation by microorganisms isolated from the marine environment Cerniglia C. E.;J. J. Perry https://doi.org/10.1002/jobm.3630130403
  4. Chem. Biol. Interact. v.57 Microbial metabolism of pyrene Cerniglia C. E.;D. W. Kelly;J. P. Freeman;D. W. Miller https://doi.org/10.1016/0009-2797(86)90038-4
  5. Appl. Environ. Microbiol. v.67 Biotransformation of malachite green by the fungus Cunninghamella elegans Cha C. J.;D. R. Doerge;C. E. Cerniglia https://doi.org/10.1128/AEM.67.9.4358-4360.2001
  6. J. Microbiol. Biotechnol. v.10 Mechanisms used by white-rot fungus to degrade lignin and toxic chemicals Chung N.;I. S. Lee;H. S. Song;W. G. Bang
  7. Phanerochaete chrysosporium. J. Microbiol. Biotechnol. v.11 Effect of nutrient nitrogen on the degradation of pentachlorophenol by white rot fungus Chung N.;G. Kang;G. H. Kim;I. S. Lee;W. G. Bang
  8. Phytochemistry v.55 Transformation of Jervine by Cunninghamella elegans ATCC 9245 El Sayed K. A.;A. F. Halim;A. M. Zagholul;D. C. Dunbar;J. D. McChesney https://doi.org/10.1016/S0031-9422(00)00202-8
  9. Can. J. Microbiol. v.40 Mineralization of alachlor by lignindegrading fungi Ferrey M. L.;W. C. Koskinen;R. A. Blanchette;T. A. Burnes https://doi.org/10.1139/m94-126
  10. J. Microbiol. Biotechnol. v.12 Detection of oleic acid biodegradation by fungi Han D. W.;H. Suh;D. H. Lee;B. J, Park;K. Takatori;J. C. Park
  11. Pesticide Biotransformation in Plants and Microorganisms, ACS symposium series 777 Biochemical conjugation of pesticides in plants and microorganisms: An overview of similarities and divergence Hall J. C.;J. S. Wickenden;K. Y. F. Yau;J. C. Hall (ed.);R. E. Hoagland (ed.);R. M. Zablotowicz (ed.)
  12. Proceedings of International Symposium on Fungicide Resistance and Development of New Fungicides Biological activity of LGC-30473: A novel oomycetes fungicide Kim D. S.
  13. Plant Pathol. J. v.15 Field performance of a new fungicide ethaboxam against cucumber downy mildew, potato late blight and pepper phytophthora blight in Korea Kim D. S.;H. C. Park;S. J. Chun;S. H. Yu;K. J. Choi;J. H. Oh;K. H. Shin;Y. J. Koh;B. S. Kim;Y. I. Hahm;B. K. Chung
  14. Aerobic soil metabolism of ethaboxam, MSc Thesis Lee Y. S.
  15. Appl. Environ. Microbiol. v.66 Transformation of amoxapine by Cunninghamella elegans Moody J. D.;D. Zhang;T. M. Heinze;C. E. Cerniglia https://doi.org/10.1128/AEM.66.8.3646-3649.2000
  16. J. Microbiol. Biotechnol. v.11 Biodegradation of hydrocarbons by an organic solvent-tolerant fungus, Cladosporium resinae NK-1 Oh K. B.;W. Mar;I. M. Chang
  17. Agric. Chem. Biotechnol. v.45 In vitro metabolism of ethaboxam by rat liver microsomes Park M. K.;H. G. Hur;K. H. Liu;Y. H. Lee;Y. S. Lee;J. H. Kim
  18. Appl. Microbiol. Biotechnol. v.45 Formation of sulfate and glucoside conjugates of benzo[e]pyrene by Cunninghamella elegans Pothuluri J. V.;F. E. Evans;T. M. Heinze;C. E. Cerniglia https://doi.org/10.1007/s002530050747
  19. J. Ind. Microbiol. Biotechnol. v.22 Biotransformation of 1-nitrobenzo[e]pyrene by the fungus Cunninghamella elegans Pothuluri J. V.;J. P. Freeman;C. E. Cerniglia https://doi.org/10.1038/sj.jim.2900601
  20. Korean J. Med. Chem. v.5 Synthesis and fungicidal activity of novel 2-aminothiazole carboxamide derivatives Ra C. S.;Y. S. Rew;W. B. Cho
  21. Part 1: Herbicides and Plant Growth Regulators Metabolic Pathways of Agrochemicals Roberts T. R.;D. H. Hutson
  22. Part 2: Insecticides and Fungicides Metabolic Pathways of Agrochemicals Roberts T. R.;D. H. Hutson
  23. Agronomy J. v.67 Degradation of alachlor by Rhizoctonia solani Smith A. E.;D. V. Phillips https://doi.org/10.2134/agronj1975.00021962006700030016x
  24. Miologia v.91 Biotransformation of phthalazine by Fusarium moniliforme and Cunninghamella elegans Sutherland J. B.;J. P. Freeman;A. J. Williams;J. Deck
  25. J. Agric. Food. Chem. v.23 Degradation of alachlor by a soil fungus Chaetomium globosum. Tiedje J. M.;M. L. Hagedorn https://doi.org/10.1021/jf60197a029
  26. Biochem. J. v.205 Metabolism of xenobiotic compounds by enzymes in cell extracts of the fungus Cunninghamella elegans Wackett L. P.;D. T. Gibson
  27. Biocatalysis and Biodegradation Wackett L. P.;P. C. D. Hersherger
  28. FEMS Microbiol. Lett. v.188 Cloning sequencing and expression in Escherichia coli of a cytochrome P450 gene from Cunninghamella elegans Wang R. F.;W. W. Cao;A. A. Khan;C. E. Cerniglia https://doi.org/10.1111/j.1574-6968.2000.tb09168.x
  29. Biochem. Biophy. Res. Comm. v.268 Cloning and characterization of the cytochrome P450 oxidoreductase gene from the zygomycetes fungus Cunninghamella Yadav J. S.;J. C. Loper https://doi.org/10.1006/bbrc.2000.2124
  30. agric. Chem. Biotechnol. v.44 Evaluation of foliar uptake of eight fungicides using a new measuring tool, congo red method Yu J. H.;H. K. Park;K. Y. Cho;J. H. Kim
  31. Chem. Biol. Interact v.102 Formation of mammalian metabolites of cyclobenzaprine by the fungus, Cunninghamella elegans Zhang D.;F. E. Evans;J. P. Freeman;Y. Yang;J. Deck;C. E. Cerniglia https://doi.org/10.1016/S0009-2797(96)03736-2