DOI QR코드

DOI QR Code

Effect of Water Extract of Green tea, Persimmon Leaf and Safflower Seed on Heme Synthesis and Erythrocyte Antioxidant Enzyme Activities in Lead-Administered Rats

납투여한 흰쥐의 헴합성과 적혈구 중의 항산화효소 활성에 미치는 녹차, 감잎, 홍화 열수추출물의 영향

  • 김명주 (대구산업정보대학 식품영양과) ;
  • 조수열 (영남대학교 식품영양학과) ;
  • 장주연 (영남대학교 식품영양학과) ;
  • 박지윤 (영남대학교 식품영양학과) ;
  • 박은미 (경북대학교 유전공학연구소) ;
  • 이미경 (경북대학교 식품생물산업연구소) ;
  • 김덕진 (대구대학교 식품ㆍ생명ㆍ화학공학부)
  • Published : 2003.03.01

Abstract

This study was performed to investigate the effect of water extract of green tea (GT), persimmon leaf (PL) and safflower seed (SS) on heme synthesis and erythrocyte antioxidant enzyme activities in lead (Pb)-administered rats. Male rats were divided into five groups. a normal, Pb-control (Pb-Con), Pb-GT, Pb-PL and Pb-55 groups with ten rats per group. Pb (25 mg/kg. BW) was orally administerd once a day for 4 weeks. The extract of GT, PL and 55 were administered based on 1.26 g of raw traditional tea/kg BW/day. Blood hematocrit, homoglobin level and red blood cell counts were significantly lower in rb-Con group than in normal group. However, the supplementation of GT, PL and 55 were effective to improve the hematological parameters. Plasma AST and ALT activities were significantly lower in Pb-GT, Pb-PL, Pb-SS groups than in Pb-Con group. The $\delta$ -amino-levulinic acid dehydratase (ALAD) activity of blood and liver were significantly lowered in Pb-Con group com-pared to those of the normal group. The ALAD activity in Pb administered rats was recovered to tile normal level by the water extract of GT, PL and 55 supplementation. Erythrocyte superoxide dismutase and catalse activities were significantly higher in Pb-Con group than in normal group, whereas glutathione peroxidase activity was lowered in Pb administered rats. The extract of GT, PL and SS supplement attenuated changes of these erythrocyte antioxidant enzyme activities by Pb intoxication.

한국전통차로 알려진 녹차, 감잎 및 홍화의 열수추출물이 납투여된 흰쥐의 헴합성과 적혈구 중의 항산화효소 활성도 변화에 미치는 영향을 구명하기 위하여 체중 kg당 25 mg의 납을 매주 1회 경구투여 하였다. 녹차잎, 감잎 및 홍화 열수추출물은 매일 일정시간에 체중 kg당 1.26 g 수준이 되도록 4주간 경구투여하여 사육한 결과 헤마토크릿치, 헤모글로빈 함량 및 적혈구 수는 납 단독투여군이 정상군에 비하여 유의적인 감소를 보였으나 녹차, 감잎 및 홍화 열수추출물 급여로 감소 정도가 완화되었다. 혈액과 간조직 ALAD 중의 활성은 정상군에 비하여 납 단톡투여 군이 유의 적으로 감소되었으며, 한국전통차 열수 추출물 급여시 활성이 정상 수준 가까이 회복되었는데 그 효능은 혈액학적 성상 변화와 유사한 경향을 나타내었다 혈장 중 AST, ALT활성은 정상군에 비하여 납 단독투여군에서 유의적으로 증가되었으며 각각의 열수추출물 급여시 납에 의한 활성 증가가 현저하게 억제되어 정상수준으로 회복되었으며 한국전통차 종류에 따른 차이는 유의적이지는 않으나 감잎과 홍화가 효과적인 것으로 관찰되었다. 적혈구 중의 SOD와 CAT활성 및 GSH 함량은 납 단독투여시 유의적으로 증가되고 GSH-Px 활성은 감소된 반면, 녹차, 감잎 및 홍화 열수추출물 급여시 납으로 인한 적혈구의 항산화효소 활성변화가 완화되었다

Keywords

References

  1. McDonell LR. 1992. Minerals in animal and human nutrition. Academic Press Inc., New York. p 359-361.
  2. Moore MR, Goldberg A, Yeung-Laiwah AA. 1987. Lead effects on the heme biosynthetic pathway. Ann NY Acad Sci 514: 191-203. https://doi.org/10.1111/j.1749-6632.1987.tb48774.x
  3. Monteiro HP, Abdalla DSP, Augusto O, Bechara EJH. 1989. Free radical generation during $\delta$-aminolevulinic acid autoxidation: Induction by hemoglobin and connections with porphyrinpathies. Arch Biochem Biophys 271: 206-216. https://doi.org/10.1016/0003-9861(89)90271-3
  4. Haeger-Aronsen B. 1970. Evaluation of two methods for measuring delta-aminolevulinic acid in urine. Scand J Clin Lab Invest 25: 19-23. https://doi.org/10.3109/00365517009046185
  5. Marcus AH. 1985. Multicompartiment kinetic model for lead III. Lead in blood plasma and erythrocytes. Environ Res 36: 473-489. https://doi.org/10.1016/0013-9351(85)90039-8
  6. Fukumoto K, Karai I, Horiguchi S. 1983 Effect of lead on erythrocyte membranes. Br J Ind Med 40: 220-223.
  7. Ribarov SR, Bochev LC. 1982. Lead-hemoglobin interaction as a possible source of reactive oxygen species: A chemiluminescent study. Arch Biochem Biophys Acta 213: 288-292. https://doi.org/10.1016/0003-9861(82)90464-7
  8. Tanizawa H, Toda S, Sazuka Y, Taniyama T, Hayashi T, Arichi S, Takino Y. 1984. Natural antioxidants.I. Anti- oxidative components of tea leaf (Thea sinensis L.). Chem Pharm Bull 32: 2011-2014. https://doi.org/10.1248/cpb.32.2011
  9. Kimura MH, Hamashita T, Komata J. 1986. Use of green tea as an adsorbent of several metal ions in water. Bunseki Kagaku 35: 400-405. https://doi.org/10.2116/bunsekikagaku.35.4_400
  10. Dushkin MI, Zykov AA, Pivovarava EN. 1993. The effects of natural polyphenol compounds on the oxidative modification of low-density lipoprotein. Bull Eksp Bio Med 116: 393-395.
  11. Kimura Y, Okuda H, Okuda T, Hatano T, Agata I, Arichi S. 1984. Studies on the activities of tannins and related compounds: V. Inhibitory effects on lipid peroxidation in mitochondria and microsomes of liver. Planta Med 50: 473-477. https://doi.org/10.1055/s-2007-969776
  12. Fujiki H, Suganuma M, Okabe S, Komori A, Sueoka E, Sueoka N, Kozu T, Sakai Y. 1996. Japanese green tea as a cancer preventive in humans. Nutr Rev 54: S67-70. https://doi.org/10.1111/j.1753-4887.1996.tb03821.x
  13. Jung KH, Jeong CS. 1996. Protective effect of Carthmus tincotrius L. semen on hepatotoxicity by carbon tetrachloride in rats. J Appl Pharmacol 4: 428-436.
  14. Report of American Institute of Nutrition 1977. Ad Hoc committee on standards for nutritional studies. J Nutr 107: 1340- 1348.
  15. McCord JM, Fridovich I. 1969. Superoxide dismutase: An enzymatic function for erythrocuprein (Hemocuprein). J Biol Chem 244: 6049-6055.
  16. Reitman S, Franke S. 1957. A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminase. Am J Clin Pathol 2: 56-63.
  17. Weissberg JB, Lipschutz F, Oski FA. 1971. $\delta$-aminolevulinic acid dehydratase activity in circulating blood cells. A sensitive laboratory test for the detection of childhood lead poisoning. N Engl J Med 284: 556-569.
  18. Cerklewski FL, Forbes RM. 1976. Influence of dietary zinc on lead toxicity in the rat. J Nutr 106: 689-696.
  19. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autooxidation of pyrogallol & a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  20. Aebi H. 1988. Catalase in vitro. Method Enzy 10: 121-126.
  21. Paglia ED, Valentine WN. 1967. Studies on the quantitative and qualitative characterization of erythrocytes glutathione peroxidase. J Lab Clin Med 70: 158-169.
  22. Ellman GL. 1959. Tissue sulfhydryl group. Arch Biochem Biophy 82: 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
  23. Tarladgis BG, Pearson AM, Dugan LR. 1964. Chemistry of the 2-thiobarbituric acid test for determination of oxidative rancidity in foods. J Sci Food Agri 15: 602- 607. https://doi.org/10.1002/jsfa.2740150904
  24. Steel RGD, Torrie JH. 1960. Principles and procedures of statistics. McGrow Hill, New York.
  25. Barltrop D, Khoo HE. 1975. The influence of nutritional factors on lead absorption. Postgrad Med J 51: 795-800. https://doi.org/10.1136/pgmj.51.601.795
  26. Bryce-Smith D, Stephens R. 1981. Exposure to lead. Lancet 2: 877.
  27. Neal R, Yang P, Fiechtl J, Yildiz D, Gurer H, Ercal N. 1997. Pro-oxidant effects of $\delta$-aminolevulinic acid on Chinese hamster ovary cells. Toxicol Lett 91: 169-178. https://doi.org/10.1016/S0378-4274(97)03887-3
  28. Bang JS, Rhee SJ. 1991. Effect of dietary selenium on $\delta$- aminolevulinic acid dehydratase activity in lead poisoned rats. Korean J Nutr 24: 526-533.
  29. Bechara EJH, Medeiros MHG, Monteiro HP, Hermes-Lima M, Pereira B, Demasi M, Costa CA, Abdalla DSP, Onuki J, Wendel CMA, Di Mascio P. 1993 A free radical hypothesis of lead poisoning and inborn porphyrias associated with $\delta$- aminolevulinic acid overload. Quim Nova 16: 385-392.
  30. Gurer H, Ozgunes H, Neal R, Spitz DR, Ercal N. 1998. Antioxidant effects of N-acetylcystein and succimer in red blood cells from lead-exposed rats. Toxicology 128: 181-189. https://doi.org/10.1016/S0300-483X(98)00074-2
  31. Hermes-Lima M, Pereira B, Bechara EJ. 1991. Are free radicals involved in lead poisoning? Xenobiotics 21: 1085-1090. https://doi.org/10.3109/00498259109039548
  32. Jiun YS, Hsien LT. 1994. Lipid peroxidation in workers exposed to lead. Archiv Environ Health 49: 256-259. https://doi.org/10.1080/00039896.1994.9937476
  33. Ribarov SR, Benov LC, Benchev IC. 1981. The effect of lead on hemoglobin-catalyzed lipid peroxidation. Biochim Biophys Acta 664: 453-459. https://doi.org/10.1016/0005-2760(81)90123-5
  34. Fernandes AC, Filipe PM, Coelho G, Manso CF. 1991. The inhibition of lipid peroxidation by cinnarizine: Possible implications to its therapeutic and side-effects. Biochem Pharmacol 41: 709-714. https://doi.org/10.1016/0006-2952(91)90070-L

Cited by

  1. Effect of Korean Traditional Tea Materials on Minerals Content and Histological Changes in Pb-Administered Rats vol.33, pp.2, 2004, https://doi.org/10.3746/jkfn.2004.33.2.311
  2. 납중독 흰쥐에서 식이 마늘 즙의 해독효과에 관한 연구 vol.34, pp.3, 2003, https://doi.org/10.3746/jkfn.2005.34.3.342
  3. 돼지고기 급여가 납에 중독된 흰쥐의 해독과정에 미치는 영향 vol.49, pp.3, 2007, https://doi.org/10.5187/jast.2007.49.3.415